

NOAA TECHNICAL MEMORANDUM NWS WR-95

CLIMATE OF FLAGSTAFF, ARIZONA

Mike Staudenmaier, Jr.
 Reginald Preston (Retired)
 Paul Sorenson (Retired)
 Weather Forecast Office
 Flagstaff, Arizona

August 2002
Third Revision

NOAA TECHNICAL MEMORANDA National Weather Service, Western Region Subseries

The National Weather Service (NWS) Westem Region (WR) Subseries provides an informal mediumfor the documentation and quick disserrination of results not appropnate, or not yet reacy, fortormal publication. The series is used to report on work in progress, to describe technical procedures and practices, or to relate progress to a limited audience. These Technical Memoranda will report on investigations devoted primarily to regional and local problems of interest mainly to personnel, and hence will not be widely distributed.

Papers 1 to 25 are in the former series, ESSA Technical Memoranda, Westem Region Technical Memorands (WRTM); papers 24 to 59 are in the former series, ESSA Technical Memoranda, Weather Bureau Technical Memoranda (WBTM). Beginning with 60, the papers are part of the series, NOAA Technical Memoranda NWS. Out-of-print memoranda are not listed.

Papers 2 to 22, except for 5 (revised edition), are available from the National Weather Service Westem Region, Scientific Services Division, 125 South State Street - Rm 1311, Salt Lake City, Utan 84138-1102. Paper 5 (revised edition), and all others beginning with 25 are available from the National Technical Intormation Service, U.S. Department of Commerce, Sills Building, 5285 Port Royal Road, Springfield, Virginia 22161. Prices vary for all paper copies; microfiche are $\$ 3.50$. Order by accession number shown in parentheses at end of each entry.

ESSA Technical Memoranda (WRTM)

2 Climatological Precipitation Probabilities. Compiled by Lucianne Miller, December 1965.
3 Westem Region Pre- and Post-FP-3 Program, Decernber 1, 1965, to February 20, 1966. Edward D. Diemer, March 1966.

Station Descriptions of Local Effects on Synoptic Weather Pattems. Philip Williams, Jr., April 1966 (Revised November 1967, Oetober 1969). (PB-17800)
8 Interpreting the RAREP. Herbert P. Benner, May 1966 (Revised January 1967).
$\begin{array}{cl}8 & \text { Interpreting the RAREP. Herbert P. Benner, May } 1966 \text { (Revised January } \\ 11 & \text { Some Electrical Processes in the Atmosphere. J. Latham, June } 1966 .\end{array}$
11 Some Electrical Processes in the Atmosphere. J. Latham, June 1966. A Digitalized Summary of Radar Echo
and L. B. Overaas, December 1966.
21 An Objective Aid for Forecasting the End of East Winds in the Columbia Gorge, July through October. D. John Coparanis, April 1967.
22 Derivation of Radar Horizons in Mountainous Terrain. Roger G. Pappas, Apri! 1967.

ESSA Technical Memoranda, Weather Bureau Technical Memoranda (WBTM)

25 Verification of Óperation Probability of Precipitation Forecasts, April 1966-March 1967. W. W. Dickey, October 1967. (PB-176240)
26 A Study of Winds in the Lake Mead Recreation Area. R. P. Augulis, January 1968. (PB-177830) Weather Extremes. R. J. Schmidi,
Small-Scale Analysis and Prediction. Philip Williams, Jr., May 1968. (PB178425)
30 Numerical Weather Prediction and Synoptic Meteorology. CPT Thomas D. Murphy, USAF, May 1968. (AD 673365)

31 Precipitation Detection Probabilities by Salt Lake ARTC Radars. Robert K. Belesky, July 1968. (PB 179084)

32 Probability Forecasting-A Problem Analysis with Reference to the Portand Fire Weather District. Harold S. Ayer, July 1968. (PB 179289)
36 Temperature Trends in Sacramento-Another Heat Island. Anthony D. Lentini, February 1969. (PB 183055)

37 Disposal of Logging Residues Without Damage to Air Quality. Owen P. Cramer, March 1969. (PB 183057)

39 Upper-Atr Lows Over Northwestem United States. A.L. Jacobson, April 1969. PB 184296)
40 The Man-Machine Mix in Applied Weather Forecasting in the 1970s. L.W. Snellman, August 1969. (PB 185068)
43 Forecasting Maximum Temperatures at Helena, Montana. David E. Olsen, October 1969. (PB 185762)

44 Estimated Retum Periods for Short-Duration Precipitation in Arizona. Paul C. Kangieser, October 1969. (PB 187763)

46 Applications of the Net Radiometer to Short-Range Fog and Stratus Forecasting at Eugene, Oregon. L. Yee and E. Bates, December 1969. (PB 190476)

47 Statistical Analysis as a Flood Routing Tool. Robert J.C. Bu
49 Predicting Precipitation Type. Robert J.C. Bumash and Floyd E. Hug, March 1970. (PB 190962) 50 Statistical Report on Aeroallergens (Pollens and Moids) Fort Huachuca, Arzona, 1969. Wayne S. Johnson, April 1970. (PB 191743)
51 Westem Region Sea State and Surf Forecaster's Manual. Gordon C. Shields and Gerald B. Burdwell, July 1970. (PB 193102)
52 Sacramento Weather Radar Climatology. R.G. Pappas and C. M. Veliquette, July 1970. (PB 193347)

54 A Fiefinement of the Vorticity Field to Delineate Areas of Significant Precipitation. Barry B. Aronovitch, August 1970.
55 Application of the SSARR Model to a Basin without Discharge Record. Vail Schemerhom and Donal W. Kuehl, August 1970. (PB 194394)

56 Areal Coverage of Precipitation in Northwestem Utah. Philip Williams, Jr., and Werner J. Heck, September 1970. (PB 194389)
57 Preliminary Report on Agricultural Field Buming vs. Atmospheric Visibility in the Willamette Vailey of Oregon. Earl M. Bates and David O. Chilcote, September 1970. (PB 194710)
58 Air Pollution by Jet Aircraft at Seattle-Tacoma Airport. Wallace R. Donaldson, October 1970. (COM 7100017)
59 Application of PE Model Forecast Parameters to Local-Area Forecasting. Leonard W. Snellman, October 1970. (COM 71 00016)
60 An Aidfor Forecasting the Minimum Temperature at Medford, Oregon, Arthur W. Fritz, October 1970. (COM 7100120)
63 700-mb Warm Air Advection as a Forecasting Tool for Montana and Northem Idaho. Norris E. Woemer, February 1971. (COM 71 00349)
64 Wind and Weather Regimes at Great Falls, Montana. Warren B. Price, March 1971
65 Climate of Sacramento, Califomia. Laura Masters-Bevan. NWSO Sacramento, November 1998 ($6^{\text {m }}$ Revision. (PE99-118424)
66 A Preliminary Report on Correlation of ARTCC Radar Eehoes and Precipitation. Wibur K. Hall, June 1971. (COM 71 00829)

69 National Weather Service Support to Soaring Activities. Elis Burton, August 1971. (COM 71 00956)
71 Westem Region Symoptic Analysis-Problems and Methods. Philip Williams, Jr., February 1972. (COM 72 10433)
74 Thunderstorms and Hail Days Probabilities in Nevada. Clarence M. Sakamoto, April 1972. (COM 72 10554)
75 A Study of the Low Level Jet Stream of the San Joaquin Valley. Ronald A. Willis and Philip Williams, Jr., May 1972. (COM 72 10707)
76 Monthly Climatological Charts of the Behavior of Fog and Low Stratus at Los Angeles Intemational Airport. Donald M. Gales, July 1972. (COM 72 11140)
77 A Study of Radar Echo Distribution in Arizona During July and August. John E. Hales, Jr., July 1972. A Study of Radar
(COM 72 11136) Regression. Michael J. Oard, February 1977. (PB 273 694/AS)
114 Tropical Cyclone Kathleen. James R. Fors, February 1977. (PB 273 676/AS)
116 A Study of Wind Gusts on Lake Mead. Bradley Colman, April 1977. (PB 268 847)
The Relative Frequency of Cumulonimbus Clouds at the Nevada Test Site as a Function of K Value. R.F. Quining, April 1977. (PB 272831)
118 Moisture Distribution Modification by Upward Vertical Motion, Ira S. Brenner, April 1977. (PB 268 740)

119 Relative Frequency of Occurrence of Warm Season Echo Activity as a Function of Stability Indices Computed from the Yucca Flat, Nevada, Rawinsonde. Darryl Randerson, June 1977. (PB 271 290/AS)
121 Climatological Prediction of Cumulonimbus Clouds in the Vicinity of the Yucca Flat Weather Station. R.F. Quiring, June 1977. (PB 271 704/AS)
(Statistical Guidance on the Prediction of Eastem North Pacific Tropical Cy

126 Preston W. Lettwich and Charles J. Neumann, August 1977. (PB 273 155/AS) Cimate o San Francisco. E. Jan Null, February 1978. (Revised by George T. Perich, April 1988
and Januar 1S95). (PB88 208624/AS) and January 1995). (PB88 208524/AS)
127 Development of a Probability Equation for Winter-Type Precipitation Pattems in Great Falls, Montana. Kenneth B. Mielke, February 1978. (PB 281 387/AS)
128 HandCalculator Program to Compute Parcel Thermal Dynamies. Dan Gudgel, April 1978. (PB283 080/AS)
129 Fire whirds. David W. Goens, May 1978. (PB 283 866/AS)
130 Flash-Flood Procedure. Ralph C. Hatch and Gerald Williams, May 1978. (PB 286 014/AS)
131 Automated Fire-Weather Forecasts. Mark A. Mollner and David E. Olsen, September 1978. (PB 289 916/AS)

Spectral Techniques in Ocean Wave Forecasting. John A Jannuzzi, October 1978. (PB291317/AS)
134 Solar Radiation. John A Jannuzzi, November 1978. (PB291 195/AS) Waters. Lawrence P. Kierulfi, January 1979. (PB292716/AS)
136 Baters. Lawrence P. Kierulif, January 1979. (PB292716/AS)
136 Basic Hydrologic Principles. Thomas L. Dietrich, January 1979. (PB292247/AS) Zimmerman and Charles P. Ruscha, Jr., January 1979. (PB294324/AS)
A Simple Analysis/Diagnosis System tor Real Time Evaluation of Vertical Motion. Scott Heflick and A Simple Analysis/Diagnosis System for Real Time Evaluation of Vertical Motion. Scott Hellick and
James R. Fors, February 1979 . (PB2942t6/AS)
Adds for Forecasting Minimum Temperature in the Wenatchee Frost District. Roben S. Robinson,
139 Alds for Forecasting Minimum Temperature in the Wenatchee Frost District. Roben S. Robinson, April 1979. (P8298339/AS)
140 Influence of Cloudiness on Summertime Temperatures in the Eastern Washington Fire Weather district. James Holcomb, April 1979. (PB298674/AS)
141 Comparison of LFM and MFM Precipitation Guidance for Nevada During Doreen. Christopher Hill, April 1979. (PB298613/AS)
142 The Usefulness of Data from Mountaintop Fire Lookout Stations in Determining Atmospheric Stability. Jonathan W. Corey, April 1979. (PB298899/AS)
The Depth of the Marine Layer at San Diego as Related to Subsequent Cool Season Precipitation Episodes in Arizona. Ira S. Brenner, May 1979. (PB298817/AS)
144 Arizona Cool Season Climatological Suriace Wind and Pressure Gradient Study. Ira S. Brenner, May 1979. (PB298900/AS)
146 The BART Experiment. Morris S. Webb, October 1979. (PB80 155112)
147 Occurrence and Distribution of Flash Floods in the Westem Region. Thomas L. Dietrich. December 1979. (PB80 160344)

NOAA TECHNICAL MEMORANDUM NWS WR-95

CLIMATE OF FLAGSTAFF, ARIZONA

Mike Staudenmaier, Jr. Reginald Preston (Retired) Paul Sorenson (Retired) Weather Forecast Office Flagstaff, Arizona

August 2002
Third Revision

This publication has been reviewed and is approved for publication by Scientific Services Division, Western Region

Delain A. Edman, Chief
Scientific Services Division
Salt Lake City, Utah

TABLE OF CONTENTS

I. Narrative Geographical and Climatological Summary 1-4
II. Temperature Records
Daily Maximum and Minimum Temperature Extremes 6-17
Highest and Lowest Average Temperatures by Month 18-20
Warmest and Coldest Winter, Spring, Summer, and Fall 21-22
Highest and Lowest Annual Temperatures 23
Average Number of Days Per Month with Maximum Temperatures 80, 85, and 90 Degrees or Higher 23
Average Number of Days Per Month with Minimum Temperatures 40, 32; and 0 Degrees or Lower 24
Freeze and Growing Season Data 24
Greatest Number of Consecutive Days with Maximum Temperatures 85 degrees or Higher 24
Greatest Number of Consecutive Days with Maximum Temperatures 90 degrees or Higher 25
Greatest Number of Consecutive Days with Minimum Temperatures 0 degrees or Lower 25
III. Precipitation Records
Greatest Daily 24-Hour Precipitation (Midnight to Midnight) 27-29
Maximum and Minimum Precipitation by Months 30-31
Wettest and Driest Winter, Spring, Summer, and Fall 32-33
Yearly Precipitation Totals 34
15 Wettest and Driest Precipitation Years 35
Greatest Number of Days with 0.01 Inch and 0.10 Inch or More, with Average Number of Days 36
Greatest Number of Days with 0.25 Inch and 0.50 Inch or More, with Average Number of Days 36
Greatest Number of Consecutive Days with 0.01 Inch and 0.25 Inch or More 37
Greatest Number of Consecutive Days with 0.50 Inch and 0.75 Inch or More 38
Greatest Number of Consecutive Days without Measurable Precipitation 38
Excessive Storms 39
Greatest Daily 24-Hour Snowfall 40-42
Maximum Monthly Snowfalls 43-44
Seasonal Snowfall Totals 45
15 Snowiest and Least Snowiest Seasons 46
Excessive Snowstorms 47
Average Number of Days with Snowfall of 1 Inch or More 48
Average Number of Days with Thunderstorms 48
IV. Miscellaneous Information
Statistics on Sunshine, Cloudiness, and Fog 50
Normal Heating and Cooling Degree Days 51
Normal Daily Maximum, Minimum, and Mean Temperatures 52-64
Sunrise and Sunset Table for Flagstaff, Arizona 65
I. NARRATIVE GEOGRAPHICAL AND CLIMATOLOGICAL SUMMARY

CLIMATE OF FLAGSTAFF, ARIZONA

Flagstaff is majestically located on a plateau in the center of the largest stand of Ponderosa Pine in the United States, at the base of the San Francisco Peaks (Arizona's highest mountains, 12,633 feet). The plateau, with an average elevation of around 7,000 feet, is the southern edge of the Colorado Plateau and curves from the Grand Canyon southeastward across midArizona and then eastward into New Mexico. Flagstaff is the hub for north-south and east-west travel across northern Arizona, and is the "gateway" to numerous recreational areas in Arizona, including the Grand Canyon.

Flagstaff's elevation of 7,000 feet assures a variety of weather, including cold winters and mild pleasant summers, moderate humidity, and considerable diurnal temperature changes. Only limited farming is carried on because of the shortness of the growing season even though the average precipitation for Flagstaff is 22.91 inches. The average date of the last occurrence of $32^{\circ} \mathrm{F}$ in the spring is June 13 and that of the first $32^{\circ} \mathrm{F}$ temperature in the fall is September 21. However, the summers in Flagstaff are one of its best kept secrets, with an average maximum temperature in July of $82.2^{\circ} \mathrm{F}$, and an alltime record high of $97^{\circ} \mathrm{F}$. On average, only 4 days in the summer have maximum temperatures of $90^{\circ} \mathrm{F}$ or higher. Summer minimum temperatures are cool and refreshing with temperatures often dipping into the 40s, with an occasional night in the 30s.

The moderate summer heat gives way to a cooler, but nonetheless pleasant, fall period with maximum temperatures generally in the 60s, with minimum temperatures falling below freezing. Winter weather typically
begins by November and becomes well entrenched by December, with frequent light to moderate snows and increasingly colder weather. By December, minimum temperatures are generally in the teens; however, afternoon maximum temperatures still average in the 40 s due to the amount of sunshine the station receives. Because of its location with respect to the typical jet stream and high altitude, Flagstaff is one of the 10 most sunny locations for National Weather Service offices in the United States, averaging 78 percent of the possible sunshine throughout the year. Even with all of this winter sunshine, significant snowfall can be expected during the winter with an average snowfall of around 110 inches per year. Between storms, when dry high pressure builds with light winds and fresh snow cover on the ground, minimum temperatures can plummet. The all-time record low for Flagstaff is $-30^{\circ} \mathrm{F}$.

By mid-April, winter weather usually begins to break, and although snow is not uncommon in May, warm spells become more frequent. Snowfall has been reported as late as June. Spring in Flagstaff is typically breezy and dry with little precipitation occurring in May and early June.

There are two distinct periods of precipitation in Flagstaff. The first occurs during the winter months from November through April when the jetstream can be located far enough south to allow Pacific storm systems to move over the state. The other distinct period is classified as the summer rainy season, or "summer monsoon." The monsoon rainy period usually occurs during July and August when most of Arizona is subjected to widespread thunderstorm activity. These
thunderstorms are extremely variable in intensity and location and occur mainly between the hours of 11:00 a.m. and 6:00 p.m.

Prevailing winds at Flagstaff are southerly most of the year. This is due to terrain influences and short-wave weather disturbances moving across the Great Basin region of the West. Winds of damaging force (greater than 60 mph) are rare, but may occur around some of the mountain locations during the winter and spring months. Additionally, some thunderstorms may produce local wind gusts over 60 mph for short durations.

Since there is no concentration of industry; smoke pollution is almost nonexistent, and the air is remarkably free of contaminants of any kind, although smoke from resident's fireplaces can become a problem on some of the colder nights due to strong radiational inversions that develop. During the winter and spring months, fog occasionally forms due to radiational cooling from snow cover on the ground. However, this fog usually breaks up quickly by morning. In spite of the elevation, periods of low ceilings and limited visibilities are usually of short duration.

A HISTORY OF WEATHER OBSERVATIONS AT FLAGSTAFF

The first official weather station in Flagstaff was established 9 September 1898. The office was located at the southeast corner of Aspen Avenue and Park Street in a onestory, five-room brick building known as the "Milligan Cottage." The first observer was Miss Elizabeth Renoe, who later married a young attorney who became the first United States Senator from Arizona, Senator Henry Ashurst.

On 15 March 1912, the station was moved to Sitgreaves and Ellery Streets, which was one-half mile southeast of the previous location. The station remained at this location until 29 October 1919. The station was then moved to 602 North Leroux Street.

On 1 June 1943, the weather station was moved to the Federal Post Office Building in downtown Flagstaff. A first-order weather station was then established.

On 12 January 1950, the weather station was moved to the Flagstaff Municipal Airport, six miles south of Flagstaff. The station and the weather service office remained at the airport until June 1994 when the National Weather Service office moved to the Camp Navajo Army Depot in Bellemont, 10 miles west of Flagstaff. From July 1994 to July 1995, the National Weather Service office was temporarily located in the army barracks while a new office was constructed. On 21 July 1995, the office officially moved to its current location on the Camp Navajo Army Depot. An automated weather station (ASOS) remains at the Flagstaff Municipal Airport recording the official observations for Flagstaff. The ASOS was commissioned 1 July 1994.

SOME HIGHLIGHTS OF THE WEATHER RECORDS IN FLAGSTAFF

Many unusual weather events have taken place in Flagstaff since official weather observations began on 9 September 1898. The following is a brief description of some of the more extreme conditions recorded since then.

The all-time record high temperature for Flagstaff of $97^{\circ} \mathrm{F}$ occurred on 5 July 1973. Skies were clear and winds were generally light westerly, although by afternoon, winds were generally around 10 mph . The early morning temperature of $51^{\circ} \mathrm{F}$ was very close to the normal of $48^{\circ} \mathrm{F}$. The next day, a weak cold front approached the state, keeping the afternoon high temperature at $89^{\circ} \mathrm{F}$.

The all-time record warmest minimum temperature for Flagstaff was broken on back-to-back nights in 2002. On 1 July 2002, the mercury fell to only $67^{\circ} \mathrm{F}$, breaking the previous record of $66^{\circ} \mathrm{F}$ set in 1949. This record was then broken again the next night when the temperature only fell to $68^{\circ} \mathrm{F}$. Oddly enough, the dew point temperatures were only in the lower 40s during this period and there was no extensive cloud cover or winds to keep the temperatures from falling rapidly. However, there was a large fire burning to the east of Flagstaff with some smoke in the area that may have contributed to the record warm overnight temperatures.

The longest consecutive stretch of days with maximum temperatures of $90^{\circ} \mathrm{F}$ or greater in Flagstaff was 11 days. This occurred 21 June through 1 July 1990. The highest temperature reached during this longest stretch of warm weather was $94^{\circ} \mathrm{F}$.

The longest consecutive stretch of days with maximum temperatures of $85^{\circ} \mathrm{F}$ or greater in Flagstaff was 22 days. This occurred 10 June through 1 July 1974.

The maximum number of days in a calender year with temperatures of $90^{\circ} \mathrm{F}$ or greater was 15 set in 1974. Of note, 14 of those days occurred in June. The maximum number of days in a year with temperatures of $85^{\circ} \mathrm{F}$ or greater was 48
days which was also set in the warm summer of 1974. Twenty-one of these days occurred in June of that year.

The coldest temperature ever recorded in Flagstaff was $-30^{\circ} \mathrm{F}$. This was observed on 22 January 1937. The maximum temperature reached that day was $+12^{\circ} \mathrm{F}$, which was a $42^{\circ} \mathrm{F}$ diurnal spread.

The maximum number of consecutive days with minimum temperatures of $0^{\circ} \mathrm{F}$ or lower was eight. This stretch of cold weather occurred from 27 December 1966 through 3 January 1967.

The maximum number of days in a calender year with minimum temperatures of $0^{\circ} \mathrm{F}$ or lower was 23 set in 1932. The maximum number of days in any month with minimum temperatures of $0^{0} \mathrm{~F}$ or lower was 17 set in the extremely cold month of January 1937. The average minimum temperature that month was $-2.9^{\circ} \mathrm{F}$, which was about 18 degrees below normal.

Snowfall in Flagstaff is highly variable as well. The most snowfall ever recorded during the winter season was 210.0 inches in the winter of 1972-1973. At the other extreme, the least snowfall ever recorded at Flagstaff was 11.2 inches during the winter of 1933-1934.

The all-time record for heaviest precipitation during any calender day at Flagstaff was 3.93 inches which was set on 19 February 1993. Interestingly enough, this precipitation all fell in the form of rain, with temperatures remaining in the middle and upper 30s through the entire 24 hours. Another 1.18 inches of precipitation fell the next day; however, temperatures fell during the morning hours, changing the rain to snow, with a
snow accumulation of 3.2 inches by the end of the day.

February 1993 was the wettest month on record, with 10.05 inches of precipitation falling during that period. Additionally, January 1993 was the wettest January on record, with 9.55 inches of precipitation falling. Thus, almost 20 inches of precipitation (or almost the entire normal precipitation for the year for Flagstaff) fell in a 2-month period of time. December 1992 was the second wettest December on record, giving a 3-month total from December 1992 through February 1993 of 27.38 inches, which is by far the wettest 3month period of time in Flagstaff climatological history. Needless to say, this period was known for the magnitude of flooding which occurred across the area.

The most snowfall to occur within a continuous stormy period occurred from 1320 December 1967, when an estimated 84.6 inches of snow fell during this period. Due to the large amount of snowfall that fell, estimates of snowfall were used to calculate the official amount. Unofficially, it is estimated that over 100 inches of snowfall likely fell during this event. By the end of this event, 83 inches of snow lay on the ground, essentially paralyzing the city of Flagstaff and most of northern Arizona for over a week.

The greatest number of consecutive days without measurable precipitation was recorded from 24 September to 31 December 1999, a total of 99 days! The greatest number of consecutive days with measurable precipitation was 17 days set during the period of 20 July through 5 August 1968, when a total of 3.29 inches of precipitation fell.

The most precipitation ever recorded in one calender year at Flagstaff was 36.59 inches, set during 1965. The least precipitation recorded in one calender year at Flagstaff was 9.90 inches, set in 1942. Average annual precipitation for Flagstaff is 22.91 inches.
II. TEMPERATURE RECORDS

MONTH: January

	High		Low		High		Low	
Date	Max	Year	Max	Year	Min	Year	Min	Year
1	61	1981	17	1919	34	1934	-21	1919
2	60	1902	19	\#1919	41	1997	-21	1919
3.	62	1918	17	1949	30	\#1998	-19	\#1937
4.	64	1927	12	1971	33	\#1991	-22	1971
5.	61	1948	10	1971	33	\#1991	-22	1910
6	61	1969	8	1913	33	1921	-18	1910
7.	65	1914	17	1937	34	1993	-17	1913
8 .	62	2002	23	\#1937	39	1962	-12	1989
9	61	1996	22	1937	33	1907	-9	1937
10	65	1990	21	1937	33	1911	-15	1937
\%								
11	63	1990	25	1913	36	1982	-23	1913
12	58	1928	5	1963	35	\#1981	-20	1963
13	59	\#1996	20	1963	38	1957	-6	\#1963
14	65	1943	26	1960	35	1909	-9	1963
15.	65	1943	24	1949	35	1938	-12	1937
16.	60	\#1974	21	1987	36	1976	-8	1915
17	62	1971	21	1960	35	1914	-13	1987
-18	64	1971	22	1943	35	1914	-8	1995
19	62	1986	22	1937	32	\#1998	-13	1943
20	61	1950	16	\#1937	34	\#1969	-14	1922
21	60	1944	15	1937	35	1969	-24	1937
22	62	1970	12	1937	31	\#1969	-30	1937
23	61	1970	17	1932	31	1923	-15	\#1937
, 24.	61	1982	15	1937	42	1999	-15	1964
25.	61	1975	24	1937	44	1999	-17	1937
-26	60	1987	22	\#1979	37	1969	-15	1937
27.	59	1986	21	1948	34	\#1975	-13	1979
28.	63	1986	20	1979	34	1911	-13	1918
29.	60	1986	15	1979	36	1911	-12	1932
30	66	1971	24	1916	33	1963	-19	1979
31	63	1971	19	1916	34	\#1963	-25	1916
Month	66	1971	5	1963	44	1999	-30	1937

MONTH: FEBRUARY

\# Also occurred in other previous years

MONTH: MARCH

DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES

SEPTEMBER 1898-JULY 2002

MONTH: APRIL

4.	High		Low		High		Low	
Date.	Max	Year	Max	Year	Min	Year	Min	Year
$1{ }^{1}$	73	1966	31	1999	40	1986	2	1970
2.	72	\#1966	29	1999	42	2001	-2	1975
3.	71	\#1961	30	1999	40	2001	8	1980
4.	74	1961	27	1999	39	1909	5	1977
5.	75	1959	30	1921	40	1919	8	1958
6	75	1989	34	1929	40	1946	4	1922
7	80	1989	28	1975	40	1931	10	1922
8\%	78	1989	30	1975	40	\#1989	14	\#1999
9 ${ }^{2}$	75	1989	32	1943	40	1962	9	1953
10	74	1989	31	\#1979	42	1948	13	1999
11	75	1907	29	1927	47	1989	10	1945
12.4	75	1904	28	1967	44	1982	7	\#1953
13.	75	1962	36	1912	40	1988	0	1965
144	75	1937	33	1938	42	1904	5	1972
15%	76	\#1948	33	1998	43	2002	11	1965
16\%	77	1948	30	1976	43	\#1937	13	1995
17\%	77	1946	33	\#1995	43	1964	16	1924
18.	79	1989	32	1995	46	1981	16	\#1978
19.	77	1989	29	1933	51	2001	10	1917
20	78	1989	33	1995	45	1925	8	\#1966
21.	78	1989	34	1932	44	1989	12	\#1972
22.	76	1949	30	1925	46	1930	11	\#1963
23.	77	1949	36	\#1932	44	1981	14	1963
24	77.	1949	42	\#1999	47	1943	10	1900
25.	78	1996	38	1994	45	1959	13	\#1961
26.	79	1996	34	\#1985	45	1917	17	\#1984
27.	77	\#2000	37 :	1932	44	1946	10	1984
28.	80	1992	30	1970	49	1981	13	1970
29.	78	1992	35	1942	51	1981	7	1970
30	78	\#1981	34	1915	48	1995	10	1967
Month	80	\#1992	27	1999	51	\#2001	-2	1975

MONTH: MAY

DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES SEPTEMBER 1898-JULY 2002

MONTH: JUNE

DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES
 SEPTEMBER 1898-JULY 2002

MONTH: JULY

DAIL Y MAXIMUM AND MINIMUM TEMPERATURE EXTREMES

 SEPTEMBER 1898-JULY 2002MONTH: AUGUST

DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES SEPTEMBER 1898-JULY 2002

MONTH: SEPTEMBER

	High		Low		High		Low	
Date	Max	Year	Max	Year	Min	Year	Min	Year
1	91	1948	63	1913	56	1995	33	1962
2	91	1948	64	\#1940	55	1936	35	1953
3.	91	1948	62	1961	54	\#1989	34	\#1973
4 ,	90	1945	63	1936	57	\#1998	27	1961
5	89	1945	59	1939	56	1980	31	1961
6	87	1977	55	1975	56	1899	33	1985
7	89	1977	62	\#1975	55	1903	35	1970
8	88	\#1977	61	1908	57	1919	33	1935
9	87	\#1977	58	1912	55	1945	31	2001
10.	87	\#1990	65	1996	56	1939	28	1912
11.	88	1990	59	1985	54	1952	30	1986
12.	88	1990	56	1927	54	1914	25	1985
13	89	1990	56	1927	55	\#1970	26	1952
14	88	\#2000	57	1911	57	1938	29	\#1988
15 \%	87	\#2000	53	1906	52	\#1990	26	1903
16	88	2000	59	\#1996	60	1929	28	1971
17	88	1956	49	1923	56	1929	27	1903
18	86	1956	46	1965	54	1942	30	\#1968
19	84	\#1956	51	1965	53	\#1992	25	1971
20.	83	\#2000	54	1965	53	1939	23	1971
21.	84	1943	60	1965	56	1928	23	1955
22	83	1949	57	1986	53	2000	20	1912
23	86	1944	51	1986	56	1931	25	1970
24.	85	1947	41	1986	51	1939	25	1918
25.	85	1947	46	1986	54	1929	24	\#1959
26	84	1899	53	1913	50	1926	22	1934
27	83	1963	52	\#1936	49	\#1977	23	1900
28	82	\#1963	51	1945	52	1911	21	1900
29	82	1978	49	1983	50	1911	22	1902
30	83	1980	54	1971	51	1944	24	1907
Month	91	\#1948	41	1986	60	1929	20	1912

\# Also occurred in other previous years

DAILY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES SEPTEMBER 1898-JULY 2002

MONTH: OCTOBER

	High		Low		High		Low	
Date	Max	Year	Max	Year	Min	Year	Min	Year
1	85	1980	41	1959	53	1981	23	\#1982
2	82	1991	45	1959	49	1951	18	1971
3 .	83	1980	46	1908	49	1998	21.	1902
4.	83	1947	50	1960	50	1900	15	1908
$5 \times$	80	1991	40	1912	48	1925	14	1969
6.	81	1987	42	1912	50	1972	18	1912
7.	80	1965	53	1970	47	1923	21	\#1955
8.	80	\#1980	41	1939	52	1926	21	1900
9.	81	\#1996	41	1961	45	\#1988	20	1970
10.	81	1996	44	1960	48	1942	20	1973
11.	80	\#1965	42	1969	47	1981	19.	1920
12.	83	1950	39	1947	46	1987	9	1969
13.	79	1950	41	1920	46	1991	12	1969
14	78	1991	39	1928	46	1944	18	1975
15.	78	1991	38	1960	43	\#1938	19	1966
16.	78	1991	38	1994	44	\#1972	13	1984
17\%	78	1973	31	1971	43	1969	18	1998
18%	78	1921	33	1908	45	\#1972	10	1971
19.	77	1991	38	\#1920	44	1979	6	1971
20.	74	\#1950	32	1920	43	\#1951	4	1949
21.	75	\#1952	37	\#1920	46	1901	5	1949
22.	75	1954	32	1906	43	2001	9	1906
23.	74	1988	38	1920	45	1944	10	1906
24	79	1959	42	1919	43	1960	9	1975
25.	78	1959	37	1971	42	1951	11	1975
26.	75	1959	30	1996	43	1927	14	1972
27.	74	1995	36	1996	45	1927	10	1970
28.	74	1950	35	1996	46	1981	13	1954
29	72	\#1950	31	\#1971	40	1992	9	1971
30.	72	1934	32	1961	39	1992	-2	1971
31	70	\#1999	31	1972	40	1955	7	1935
Month	85	1980	30	1996	53	1981	-2	1971

\# Also occurred in other previous years

DALY MAXIMUM AND MINIMUM TEMPERATURE EXTREMES

 SEPTEMBER 1898-JULY 2002MONTH: NOVEMBER

DAll Y MAXIMUM AND MINIMUM TEMPERATURE EXTREMES

 SEPTEMBER 1898-JULY 2002MONTH: DECEMBER

	High		Low		High		Low	
Date	Max	Year	Max	Year	Min	Year	Min	Year
1	63	1926	24	1991	36	1954	-7	1905
2	62	1946	27	1913	36	1906	-5	\#1991
3	67	1977	27	1913	37	1926	-2	\#1968
4	67	1965	26	1909	37	1926	-4	\#1955
5	67	1989	23	1912	37	1921	-1	\#1953
6	62	1977	19	1960	42	1966	-6	1951
7	66	1958	10	1978	32	\#1925	-19	1978
8	62	\#1976	12	1978	35	1957	-23	1978
9	62	\#1977	19	\#1951	32	1965	-8	1951
10	65	1939	23	1898	36	1996	-2	1956
11	68	1950	18	1949	36	1996	-11	1961
12	64	1921	26	\#1972	33	\#1937	-16	\#1961
13	66	1921	17	1967	39	1995	-19	1931
14	66	1946	20	1967	36	1934	-14	\#1972
15	63	1929	22	1971	35	1934	-14	1931
16	63	1958	21	\#1971	38	1957	-18	1971
17.	65	\#1980	22	1967	32	1929	-14	1928
18	65	1901	22	\#1924	32	1991	-14	1908
19	62	1958	22	1924	34	1998	-14	1924
20	61	1917	21	1951	35	1921	-12	1924
21	61	1969	14	1990	33	1921	-6	1967
22	64	1901	21	1990	33	1982	-16	1968
23	63	1901	16	1990	33	\#1955	-23	1990
24	61	1933	17	1974	36	1983	-17	1974
25	67	1980	20	1987	37	1971	-14	1926
26	63	1980	19	1916	34	1923	-16	1924
27	67	1980	18	1916	36	1983	-14	\#1926
28	61	1980	25	\#1988	35	\#1992	-12	1966
29	62	1945	22	1966	37	1980	-13	1988
30	62	1917	21	1966	34	1977	-16	1911
31	62	1945	18	1918	36	1909	-16	1911
Month	68	1950	10	1978	42	1966	-23	\#1990

[^0]
HIGHEST AND LOWEST AVERAGE TEMPERATURES BY MONTHS WITH YEAR OF OCCURRENCE

(September 1898 - July 2002)

Month	Normal* Monthly	Highest Average	Year	Lowest Average	Year
January	29.7	37.0	1986		
February	32.2	38.2	$1947!$	12.7	1937
March	36.6	44.9	1934	26.5	1939
April	42.9	50.4	1989	36.2	1973
May	50.8	56.8	1984	44.6	$1917!$
June	60.1	66.5	1974	53.0	1965
July	66.1	70.0	2002	61.1	$1912!$
August	64.4	67.5	$1944!$	59.5	1968
September	57.8	62.1	$1947!$	52.3	$1912!$
October	47.1	52.5	1988	38.6	1971
November	36.5	44.9	$1949!$	29.6	1972
December	30.2	39.8	1980	21.9	1972

*Climatological normals from the years 1971-2000.
! Authors' Note: Due to the fact that weather stations were often moved, especially in the early days of the National Weather Service, some records are more representative than others. Even though all temperature and precipitation observations are valid for their particular locations, some locations have proven to be more representative of the general surrounding area than others. In the Flagstaff climatology, there are two periods of observation which appear to not be as representative due to their locations.

The first of these periods is from 15 March 1912 to 29 October 1919 when the observations were taken near the intersection of Sitgreaves and Ellery Streets. This location appears to have been a cold location, with numerous record lows occurring here. When compared to other locations in Arizona during this same period of time, this unusual cold tendency appears to be due to instrument error, or to improper siting of the instruments. You will note many daily, monthly, and yearly cold records occurring during the 1912-1919 period.

The other period of suspect climate information is during the period from 1 June 1943 to 11 January 1950, when the observations were being recorded at the old Flagstaff post office located downtown. Again, due to improper siting of the instruments on the post office roof, the temperatures occurring at this location appear to be unnaturally too warm when compared to surrounding stations. You will note many daily, monthly, and yearly warm records occurring during the 1943-1950 period.

With time, these biased records will be overwritten by new records; however, until that happens, data from these two periods of record should be viewed cautiously with respect to their siting.

HIGHEST AND LOWEST MONTHLY AVERAGE TEMPERATURES
(September 1898-July 2002)

| | | Highest Monthly
 Average Temperature | | Lowest Monthly
 Average Temperature |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Month | Normal | | | |

[^1]HIGHEST AND LOWEST MONTHLY AVERAGE TEMPERATURES
(September 1898 - July 2002)

Month	Normal*	Highest Monthly Average Temperature		Lowest Monthly Average Temperature	
		Temp	Year	Temp	Year
JULY	66.1	70.0	2002	61.1	1912
		69.3	1901	61.7	1955
		69.0	1980	62.6	1911
		68.7	1931	62.7	1914
		68.4	1996	62.7	1913
AUGUST	64.4	67.5	1944	59.5	1968
		67.2	1945	60.5	1979
		66.8	1995	60.6	1916
		66.7	1939	60.7	1906
		66.5	1991	60.8	1956
SEPTEMBER	57.8	62.1	1947	52.3	1912
		61.9	1933	52.8	1900
		61.5	1956	53.0	1986
		60.7	1983	53.0	1971
		60.7	1949	53.1	1985
OCTOBER	47.1	52.5	1988	38.6	1971
		52.1	1950	40.4	1969
		51.2	1964	41.2	1908
		51.1	1952	42.0	1919
		50.9	1933	42.4	1984
NOVEMBER	36.5	44.9	1949	29.6	1972
		42.3	1995	30.4	1952
		41.8	1981	30.7	2000
		41.8	1942	31.2	1979
		41.5	1927	31.3	1964
DECEMBER	30.2	39.8	1980	21.9	1972
		37.6	1977	21.9	1932
		37.0	1939	22.0	1911
		36.5	1958	22.1	1909
		36.4	1981	22.2	1905

*Monthly normals based on climatological normals 1971-2000.

WARMEST AND COLDEST
WINTER, SPRING, SUMIMER, FALL (September 1898 - July 2002)

WINTER
(December 21 - March 20) Average $=31.7^{*}$

	Warmest			Coldest
Temp	Year	Temp		Year
37.3	$1933-34$	22.6	$1918-19$	
36.9	$1980-81$	23.3	$1916-17$	
36.0	$1985-86$	24.5	$1932-33$	
35.1	$1998-99$	24.5	$1914-15$	
34.5	$1994-95$	24.8	$1936-37$	
34.4	$1942-43$	25.0	$1912-13$	
33.9	$1999-00$	25.4	$1954-55$	
33.9	$1995-96$	25.7	$1948-49$	
33.9	$1983-84$	25.8	$1972-73$	
33.9	$1956-57$	26.3	$1921-22$	

SPRING

(March 21 - June 20)
Average $=48.5$ *

	Warmest			Coldest	
Temp	Year		Temp		Year
52.7					
51.9	1989	43.4	1998		
51.9	1981	43.7	1975		
51.8	1940	44.3	1965		
51.6	2002	44.3	1917		
51.6	2000	44.5	1995		
51.4	1947	44.7	1967		
51.3	1974	45.2	1980		
51.3	1934	45.2	1972		
51.2	2001		45.3	1983	
			4.3	1979	

*Averages based on climatological normals from 1971-2000.

WARMEST AND COLDEST
 WINTER, SPRING, SUMMER, FAIL
 (September 1898 - July 2002)
 SUMMER
 (June 21 - September 20)
 Average $=63.7^{*}$

	Warmest		Coldest	
Temp	Year	Temp	Year	
66.3	1945	59.3	1912	
66.2	1980	60.8	1906	
65.9	1943	60.9	1916	
65.6	1937	61.1	1904	
65.5	1981	61.2	1911	
65.5	1977	61.2	1907	
65.4	1901	61.3	1965	
65.3	1974	61.3	1915	
65.2	1960	61.5	1950	
65.2	1939	61.6	1968	

FALL
(September 21 - December 20) Average $=40.9^{*}$

	Warmest			Coldest
Temp	Year	Temp	Year	
45.4	1977	33.3	1971	
45.4	1950	36.0	1972	
45.0	1980	36.7	1908	
44.6	1942	37.5	1961	
44.6	1921	37.8	1931	
44.5	1981	37.8	1919	
44.3	1937	38.0	1912	
44.1	1939	38.3	1951	
43.9	1995	38.3	1905	
43.9	1910	38.3	1902	

*Averages based on climatological normals 1971-2000

HIGHEST AND LOWEST ANNUAL TEMPERATURE (1899-2001)

Highest Annual Average		Lowest Annual Average	
Temp	$\underline{\text { Year }}$	Temp	Year
49.5	1981	43.0	$1915!$
48.9	1934	43.0	$1913!$
48.1	$1943!$	43.4	$1912!$
48.1	1940	43.5	1979
47.9	$1946!$	43.7	1971
47.8	1989	43.8	1919
47.7	1977	43.9	1908
47.6	2000	44.0	1972
47.6	$1947!$		44.0

Average Annual
Temperature*
46.2

* Averages based on climatological normals 1971-2000.
! These years should be viewed with caution due to suspect observations.

AVERAGE NUMBER OF DAYS PER YEAR WITH MAXIMUM TEMPERATURES 80, 85, AND 90 DEGREES OR HIGHER
(1971-2000)

80 Degrees or higher................. 61 days
85 Degrees or higher................. 25 days
90 Degrees or higher................... 4 days

AVERAGE NUMBER OF DAYS PER YEAR WITH MINIMUM TEMPERATURES 40, 32, AND 0 DEGREES OR LOWER (1971-2000)

> 40 Degrees or lower................... 265 days 32 Degrees or lower................... 6 days 0 degrees or lower.............

FREEZE AND GROWING SEASON DATA (1899-2000)
The longest growing season on record....................... 147 days in 1940*
The shortest growing season on record............ 1968^{*}

Average growing season.. 103 days
Average date of the last spring frost (32 degrees).................June 13
Average date of the first fall frost (32 degrees)..........September 21
Average date of the last spring freeze (28 degrees).............May 21
Average date of the first fall freeze (28 degrees)...........October 10

* Based on the last day of 32 degrees in the spring and the first days of 32 degrees in the fall.

GREATEST NUMBER OF CONSECUTIVE DAYS WITH MAXIMUM TEMPERATURES 85 DEGREES OR HIGHER
 (September 1898 - July 2002)

Days

22
20
15
15
14
14
13
13
12
12
11

Date
June 10 - July 1, 1974
July 17 - Aug 5, 2000
July 24 - Aug 7, 1995
July 5 - July 19, 1901
June 18 - July 1, 1990
June 24 - July 7, 1973
July 27 - Aug 8, 1978
June 19 - July 1, 1929
July 6 - July 17, 1948
July 3 - July 14, 1940
July 9 - July 20, 1971

Only periods with 11 or more days are tabulated.

```
GREATEST NUMBER OF CONSECUTIVE DAYS WITH
                                    MAXIMUM TEMPERATURES
                                    90 DEGREES OR HIGHER
                            (September 1898-July 2002)
```

Days

Date
June 21 - July 1, 1990
July 3 - July 8, 1989
June 26 - June 30, 1974
July 26 - July 29, 1995
June 27 - June 30, 1980
June 21 - June 24, 1974
June 12 - June 15, 1974
July 2 - July 5, 1973
July 12 - July 15, 1972
June 24 - June 27, 1970
July 14 - July 17, 1948
July 26 - July 29, 1947
July 30 - Aug 2, 1938
July 23 - July 26, 1931
June 20 - June 23, 1929

Only periods with 4 or more days are tabulated.

GREATEST NUI MII	OF CONSECUTIVE DAYS WITH TEMPERATURES EES OR LOWER er 1898 - July 2002)
Days	Date
8	Dec 27,1966-Jan 3, 1967
8	Dec 31, 1918 - Jan 7, 1919
7	Dec 15, 1928 - Dec 21, 1928
7	Dec 23, 1926 - Dec 29, 1926
6	Dec 22, 1990 - Dec 27, 1990
6	Jan 3, 1971 - Jan 8, 1971
6	Jan 11, 1963 - Jan 16, 1963
6	Jan 1, 1960-Jan 6, 1960
6	Jan 21, 1937 - Jan 26, 1937
6	Dec 16, 1932 - Dec 21, 1932
6	Dec 30, 1911 - Jan 4, 1912
6	Dec 24, 1909 - Dec 29, 1909
6	Feb 4, 1903 - Feb 9, 1903

Only periods with 6 or more days are tabulated.
III. PRECIPITATION RECORDS

GREATEST DALLY 24-HOUR PRECIPITATION (INCHES) (Midnight - Midnight) September 1898 - July 2002								
	JANUARY		FEBRUARY		MARCH		APRIL	
Date	$\begin{aligned} & 24 \mathrm{Hr} \\ & \underline{\mathrm{Pcpn}} \end{aligned}$	Year	$\begin{aligned} & 24 \mathrm{Hr} \\ & \text { Pcpn } \end{aligned}$	Year	$\begin{aligned} & 24 \mathrm{Hr} \\ & \mathrm{Pcpn} \end{aligned}$	Year	$\begin{aligned} & 24 \mathrm{Hr} \\ & \mathrm{Pcpn} \end{aligned}$	Year
$\bigcirc 1$	2.08	1910	1.01	1919	2.81	1970	2.95	1903
$\square 2$	1.45	1922	2.30	1901	0.95	1978	0.91	1977
$\bigcirc 3$	0.76	1977	1.35	1901	2.11	1938	1.02	1965
- 4	1.18	1989	1.44	1958	1.14	1908	1.19	1929
- 5	1.15	1974	2.29	1976	0.77	1907	0.80	2001
- 6	1.23	1965	1.59	1965	0.85	2000	0.41	2002
47	1.50	1957	1.24	1901	0.52	1918	0.62	1946
8	1.65	1993	2.05	1993	1.27	1918	1.04	1935
9	1.13	1905	2.07	1976	0.70	1926	0.62	1965
-10	1.61	1911	1.63	1978	1.85	1912	0.71	1965
$\rightarrow+$								
C11.	0.92	1930	0.91	1939	1.91	1982	1.09	1905
-12	1.00	2001	0.70	1931	1.43	1906	1.67	1941
± 13	1.12	1997	1.84	1992	1.27	1905	0.65	1976
-14	0.42	1969	2.37	1980	1.31	1944	0.71	1976
15	0.92	1978	1.07	1927	0.77	1945	0.48	1976
16.	0.84	1917	1.40	1927	1.27	1930	1.80	1934
17	1.83	1979	0.49	1971	0.73	1922	1.67	1917
18.	1.73	1952	0.65	1980	0.64	1982	0.72	1968
19	0.74	1937	3.93	1993	1.58	1994	0.44	1951
20	0.90	1917	1.18	1993	0.69	1981	0.56	1995
21	1.36	1982	1.03	1944	1.02	1991	1.70	1985
- 22	1.53	1909	0.68	1907	1.28	1954	1.08	1925
23	1.73	1943	0.62	1957	1.09	1954	0.45	!1999
24	1.11	1944	1.19	1987	1.14	1902	1.01	1990
25	1.70	1901	0.84	1958	1.83	1910	0.36	1994
26	0.84	1997	1.17	1902	1.10	1989	1.22	1963
27	1.81	1916	0.80	1905	0.59	1938	0.69	1994
28	0.85	1916	1.80	1991	1.13	1998	1.01	1900
29	2.05	1915	0.73	1960	0.83	1967	0.74	1951
30	1.21	1922			0.84	1970	0.80	1954
31	0.87	1919			1.24	1903		
Month	2.08	1910	3.93	1993	2.81	1970	2.95	1903

GREATEST DAILY 24-HOUR PRECIPITATION (INCHES)
(Midnight - Midnight)
September 1898- July 2002

	MAY		JUNE		JULY		AUGUST	
	24 Hr		24 Hr		$24 \mathrm{Hr}$		$24 \mathrm{Hr}$	
Date	Pcpn	Year	Pcpn	Year	Pcpn	Year	Pcpn	Year
1.	0.77	1915	0.31	1991	0.51	1911	1.38	1906
2.	0.62	1905	0.91	1999	1.39	1919	1.71	1963
3.	0.97	1908	0.31	1915	0.92	!1944	1.64	1907
4 4	0.67	1960	0.52	1986	1.85	1986	1.11	1993
5	0.55	1992	0.40	1903	1.06	1967	0.76	2000
6	0.93	1921	0.55	1993	0.55	1990	2.16	1986
7.	0.33	1927	0.28	!1912	0.77	1974	1.14	1937
8.	0.77	1976	0.34	1907	1.33	1981	1.38	1959
9	0.85	1922	0.26	1983	0.88	1988	1.40	1977
10.	0.63	1944	1.47	1957	0.76	1919	1.30	1953
V_{x}								
11.	0.81	1980	0.39	1927	1.03	1918	1.10	1979
12	0.45	1965	1.32	1955	0.69	1918	1.99	1987
13.	0.53	1994	1.58	1955	1.55	1976	3.04	1986
14.	0.72	1901	0.88	1921	0.84	1967	1.10	1909
15.	0.52	1951	0.09	1965	2.55	1964	1.10	1921
16.	0.30	1951	0.17	1933	1.05	1908	0.85	1958
17.	0.96	1903	0.70	1933	1.08	1911	1.28	1920
18	0.45	1915	0.89	1949	0.93	1946	1.07	1989
19	0.50	1957	0.45	1967	2.14	1986	0.90	1984
20.	0.95	1900	0.32	1925	1.59	1986	0.56	1995
21.	0.52	1975	0.68	1958	1.20	1918	1.88	1932
22.	0.31	1919	1.27	1922	1.51	1962	2.75	1992
23.	0.97	1919	0.07	1936	1.35	1983	1.62	1988
24	1.11	1965	0.29	1922	1.37	1984	0.96	1907
25.	0.23	1994	0.78	1954	1.02	1915	1.10	1931
26.	0.75	1992	0.32	1954	1.61	1969	0.98	1984
27.	0.68	1901	0.75	1940	1.13	1905	0.82	1985
28.	0.61	1990	0.66	1938	2.19	1929	2.28	1951
29.	0.92	1992	2.40	1956	1.37	1977	1.62	1951
30	0.46	1986	0.39	1956	1.21	1964	1.23	1946
31	0.20	1981			0.76	1921	1.79	1963
Month	1.11	1965	2.40	1956	2.55	1964	3.04	1986

GREATEST DAILY 24-HOUR PRECIPITATION (INCHES)
(Midnight - Midnight)
September 1898 - July 2002

	SEPTEMBER		OCTOBER		NOVEMBER		DECEMBER	
	24 Hr		24 Hr		24 Hr		24 Hr	
Date	Pcpn	Year	Pcpn	Year	Pcpn	Year	Pcpn	Year
1	1.32	1998	0.85	1959	1.53	1987	0.45	1955
2	0.86	1990	1.03	1981	1.30	1957	0.94	1906
3	0.59	1907	1.34	1968	1.46	1957	1.33	1908
4	0.65	1970	1.60	1972	0.48	1925	1.55	1992
5	2.84	1970	1.80	1940	0.71	1987	0.98	1966
6	0.52	1954	2.34	1993	0.95	1915	2.87	1966
7	0.69	1939	1.55	1924	0.76	1969	0.94	1966
8.	0.87	1990	1.36	1961	1.80	1966	0.83	1972
9	1.18	1949	1.13	1960	0.87	1915	1.10	1965
10	1.40	1924	0.58	1985	1.90	1923	0.97	1961
11.	1.97	1985	1.52	1899	3.21	1978	0.98	1927
12	1.80	1927	1.10	1899	1.65	1985	0.88	1937
13	2.75	1941	1.31	1941	0.75	1910	1.52	1967
14.	1.50	1999	0.74	1899	1.96	1991	1.41	1967
15	0.46	1906	0.82	1994	1.25	1991	2.08	1908
16	0.60	1925	1.77	1971	0.71	1969	1.74	1908
17	1.71	1925	0.97	1907	1.30	1953	1.20	1978
18.	2.11	1965	1.75	1949	0.66	1973	2.65	1978
19	0.88	1966	1.52	1972	0.49	1940	2.32	1967
20	1.52	1952	1.18	1979	1.85	1902	1.16	1968
21.	0.81	1990	0.93	1932	1.41	1905	1.03	1909
22.	1.03	1958	0.60	2000	0.68	1965	1.50	1965
23	2.71	1983	0.57	1921	1.64	1906	1.38	1945
24	1.65	1900	2.42	1992	0.55	1918	0.44	1959
25	1.00	1986	1.48	1998	2.00	1985	1.31	1940
26	1.35	1997	0.67	1982	1.85	1919	1.83	1971
27	1.56	1903	0.82	1991	2.96	1919	1.22	1984
28	1.79	1958	0.89	1974	1.86	1975	2.50	1992
29	1.70	1971	1.24	1987	1.42	1985	0.96	1989
30	1.75	1983	1.54	1920	2.13	1982	2.95	1951
31			1.79	1987			1.22	1915
Month	2.84	1970	2.42	1992	3.21	1978	2.95	1951

		Maximum Monthly Precipitation		Minimum Monthly Precipitation	
	Normal*	Amount	Year	Amount	Year
JULY	2.40 "	7.58"	1919	Trace	1993
		6.62"	1986	0.21"	1997
		6.06"	1930	0.23"	1900
		5.93"	1917	0.30"	2000
		5.53"	1911	0.32"	1963
AUGUST	2.89"	8.77"	1904	0.26"	1962
		8.06"	1986	0.37"	1924
		6.73 "	1909	0.54"	1915
		$6.10{ }^{\prime \prime}$	1902	0.58"	1976
		5.80"	1992	0.61"	1912
SEPTEMBER	2.12"	$6.75{ }^{\prime \prime}$	1983	Trace	1992
		6.60"	1958	Trace	1973
		$6.18{ }^{\prime \prime}$	1990	Trace	1957
		4.85 "	1965	Trace	1955
		4.80"	1986	0.02"	1956
OCTOBER	1.93"	9.86"	1972	0.00"	-1917
		4.90"	1941	0.00"	1902
		4.89"	1899	Trace	1999
		4.64"	1987	Trace	1952
		4.58"	1907	Trace	1950!
NOVEMBER	1.86"	7.10 "	1905	0.00"	1999
		$6.75{ }^{\prime \prime}$	1902	0.00"	1932
		6.64 "	1985	0.00"	1916
		6.16"	1978	0.00"	1904
		5.50 "	1919	0.00"	1903
DECEMBER	1.83"	7.30"	1967	0.00"	1917
		$6.78{ }^{\prime \prime}$	1992	Trace	1999
		6.63 "	1965	Trace	1958
		6.17"	1966	0.01"	1929
		5.74"	1908	0.03"	1939

*Climatological Standard Normals 1971-2000.
! Also occurred in earlier years.

> WETTEST AND DRIEST WINTER, SPRING, SUMMER, FALL (September 1898 - July 2002)

WINTER
(December 21 - March 20)
Average $=7.21^{\prime \prime}$

Wettest		Driest	
Amount	Year	Amount	Year
$23.27^{\prime \prime}$	1992-93	0.72"	2001-02
18.66"	1979-80	1.24"	1998-99
$14.13{ }^{\prime \prime}$	1977-78	1.41 "	1933-34
13.50"	1915-16	$1.65{ }^{\prime \prime}$	1899-00
12.78"	1904-05	1.88"	1966-67
12.29"'	1981-82	$1.97{ }^{\prime \prime}$	1995-96
12.27 "	1968-69	1.98"	1983-84
12.00"	1948-49	$1.99{ }^{\prime \prime}$	1952-53
$11.75{ }^{\prime \prime}$	1900-01	2.09"	1903-04
11.33"	1951-52	2.30 "	1963-64

SPRING

(March 21 - June 20)
Average $=3.06{ }^{\prime \prime}$

Wettest		-	Driest	
Amount	Year		Amount	Year
$9.75{ }^{\prime \prime}$	1903		0.20"	1996
$8.75{ }^{\prime \prime}$	1965		0.46 "	1966
7.19"	1992		0.63"	1974
$6.49{ }^{\prime \prime}$	1915		0.65 "	1918
5.88"	1900		0.85"	2002
5.22"	1917		0.93"	1913
5.11"	1973		$1.00{ }^{\prime \prime}$	1942
5.09"	1998		1.02"	1948
5.00 "	1964		1.02"	1928
4.99 "	1926		1.03"	1956

*Averages based on climatological normals from 1971-2000.

WETTEST AND DRIEST

WINTER, SPRING, SUMMER, FALL
(September 1898 - July 2002)
SUMMER
(June 21 - September 20)
Average $=7.04 "$

	Wettest	Driest	
Amount	Year	Amount	Year
16.29"	1986	2.28"	1978
13.81"	1904	$2.76{ }^{\prime \prime}$	1944
11.79"	1998	2.85"	1991
11.56"	1970	3.12"	1973
11.48 "	1927	3.22"	1957
11.34"	1990	3.33 "	1979
11.14"	1919	3.51"	1900
10.32"	1909	3.54"	1926
10.11"	1951	3.58"	1948
10.02"	1911	3.80 "	1942

FALL
(September 21 - December 20)
Average $=5.60^{\prime \prime}$

Wettest		Driest	
Amount	Year	Amount	Year
14.60 "	1972	0.23"	1929
12.13"	1978	0.45"	1950
10.70 "	1905	0.62"	1904
10.50 "	1919	0.68"	1917
9.88"	1987	1.14"	1956
9.55"	1967	1.38"	1945
9.53"	1985	1.49"	1999
9.51"	1966	1.52"	1989
9.49"	1983	$1.56{ }^{\prime \prime}$	1898
9.24"	1982	1.59"	1976

[^2]FLAGSTAFF ARIZONA YEARLY PRECIPITATION RECORD (1899-2001)

1899 19.32"

1900	16.57"	1935	16.42"	1970	24.02"
1901	21.48"	1936	19.30"	1971	21.01"
1902	25.86"	1937	19.41"	1972	24.67"
1903	25.05"	1938	20.48"	1973	19.71
1904	20.07"	1939	12.91"	1974	17.41"
1905	34.53"	1940	21.22"	1975	20.10"
1906	22.70"	1941	25.02"	1976	20.12"
1907	25.02"	1942	$9.90{ }^{\prime \prime}$	1977	18.77"
1908	25.91"	1943	17.34"	1978	30.72"
1909	22.75"	1944	17.50"	1979	19.68'
1910	18.25"	1945	17.62"	1980	29.30"
1911	26.00"	1946	21.74"	1981	23.37"
1912	17.69"	1947	13.14"	1982	31.09"
1913	15.27"	1948	15.39"	1983	29.47"
1914	17.40"	1949	26.79"	1984	20.09"
1915	25.54"	1950	10.76"	1985	26.67"
1916	23.38"	1951	25.79"	1986	32.39"
1917	18.82"	1952	20.06"	1987	23.98"
1918	21.29"	1953	12.81"	1988	21.68"
1919	28.28"	1954	19.55"	1989	14.44"
1920	19.33"	1955	17.97"	1990	25.67"
1921	22.93"	1956	10.37"	1991	21.83"
1922	25.07"	1957	24.26"	1992	34.71"
1923	21.07"	1958	21.22"	1993	35.60"
1924	$16.74{ }^{\prime \prime}$	1959	20.42"	1994	21.95"
		*		;	
1925	19.08"	1960	16.66"	1995	19.09"
1926	16.58"	1961	18.95"	1996	11.81'
1927	24.03"	1962	18.11"	1997	17.84"
1928	14.88"	1963	14.53"	1998	27.37"
1929	15.52"	1964	19.04"	1999	15.79"
1930	21.24"	1965	36.59"	2000	$15.40^{\prime \prime}$
1931	20.34"	1966	20.28"	2001	$17.60^{\prime \prime}$
1932	21.94"	1967	22.27"		
1933	15.60"	1968	16.53"		
1934	14.80 "	1969	23.31"		

15 WETTEST YEARS
(January 1899 - December 2001)

Rank	$\underline{\text { Amount }}$	Year
1		
2	$36.59^{\prime \prime}$	1965
3	$35.60^{\prime \prime}$	1993
4	$34.71^{\prime \prime}$	1992
5	$34.53^{\prime \prime}$	1905
6	$32.39^{\prime \prime}$	1986
7	$31.09^{\prime \prime}$	1982
8	$30.72^{\prime \prime}$	1978
9	$29.47^{\prime \prime}$	1983
10	$29.30^{\prime \prime}$	1980
11	$28.28^{\prime \prime}$	1919
12	$27.37^{\prime \prime}$	1998
13	$26.79^{\prime \prime}$	1949
14	$26.67^{\prime \prime}$	1985
15	$26.00^{\prime \prime}$	1911
	$25.91^{\prime \prime}$	1908

15 DRIEST YEARS
(January 1899 - December 2001)

Rank	Amount	Year
1	$9.90^{\prime \prime}$	
2	$10.37^{\prime \prime}$	1942
3	$10.76^{\prime \prime}$	1956
4	$11.81^{\prime \prime}$	1950
5	$12.81^{\prime \prime}$	1996
6	$12.91^{\prime \prime}$	1953
7	$13.14^{\prime \prime}$	1939
8	$14.44^{\prime \prime}$	1947
9	$14.53^{\prime \prime}$	1989
10	$14.80^{\prime \prime}$	1963
11	$14.88^{\prime \prime}$	1934
12	$15.27^{\prime \prime}$	1928
13	$15.39^{\prime \prime}$	1913
14	$15.40^{\prime \prime}$	1948
15	$15.52^{\prime \prime}$	2000
		1929

*AVERAGE YEARLY PRECIPITATION: 22.91"

* Based on the 30 year average yearly precipitation from 1971-2000.

GREATEST NUMBER OF DAYS WITH 0.01 INCH OR MORE AND 0.10 INCH OR MORE BY MONTH AND YEAR OF OCCURRENCE
(1899-2001)

Month	0.01 Inch or more			0.10 Inch or more		
	Average \# of Days	Greatest \# of Days	Year	Average \# of Days	Greatest \# of Days	Year
January	7.3	18	1993	4.4	17	1993
February	7.3	16	1905	4.7	14	1905
March	8.0	21	1973	5.0	15	1973
April	5.9	20	1926	3.3	11	1926
May	4.0	15	1992	1.9	11	1992
June	3.0	10	1988	1.4	8	1972
July	11.6	21	1959	6.4	16	1919
August	12.4	23	1904	6.9	18	1904
September	7.0	16	1997	4.0	13	1996
October	5.1	15	1972	3.1	13	1972
November	4.8	15	1931	3.0	11	1905
December	6.6	18	1984	4.1	12	1984
Annual	$82.8!$	121	1941	48.3!	73	1905

GREATEST NUMBER OF DAYS WITH 0.25 INCH OR MORE AND 0.50 INCH OR MORE BY MONTH AND YEAR OF OCCURRENCE
(1899-2001)

Month	0.25 Inch or more		\cdots	0.50 Inch or more		
	Average \# of Days	Greatest \# of Days	Year	Average \# of Days	Greatest \# of Days	Year
January	2.6	11	1993	1.3	7	1993*
February	2.8	10	1905	1.2	6	1901
March	2.9	9	1992*	1.2	5	1978*
April	1.9	8	1965	0.7	6	1965
May	0.9	6	1992	0.3	3	1992*
June	0.6	4	1903	0.3	2	1988*
July	3.7	14	1919	1.5	5	1936*
August	3.6	10	1934*	1.6	6	1909*
September	2.3	9	1939	1.1	5	1958
October	1.9	9	1972*	1.1	6	1972
November	1.8	9	1905	0.9	5	1905
December	2.5	9	1965	1.0	5	1966*
Annual	27.4!	47	1905	12.2 !	24	1965

Days

17
13
13
12
11
11
11
11
10
10
10
10
10
10

Period
July 20 - August 5, 1968 Rainfall

July 18 - July 30, 1959
3.29"

August 23 - September 4, 1925 1.96 "

July 30 - August 10,2001 3.43".
February 7 - February 17, 1992 3.69"
January 19 - January 29, 1969 4.05"
January 9 - January 19, 1949 4.52"
July 10 - July 20, 1919 4.32"
February 13 - February 22, 1980 7.81"
August 8 - August 17, 1947 3.21"
December 24, 1941 - January 2, $19421.56^{\prime \prime}$
April 26 - May 5, 1926 1.36"
July 17 - July 26, 1909 1.61"
July 26 - August 4, 1908 3.30"

GREATEST NUMBER OF CONSECUTIVE DAYS WITH 0.25 INCH OR MORE (Periods with 4 days or more tabulated)
(September 1898 - July 2002)
Period
Total Rainfall

December 13 - December 19, 1967 7.06"
July 10 - July $16,19193.50^{\prime \prime}$
July 20 - July 25,1915 4.38"
February 17 - February 21, $1980 \quad 4.36^{\prime \prime}$
October 31 - November 4, 1957 4.57"
February 13 - February 17, 1927 3.92"
August 7 - August 10, 2001 2.13"
February 27 - March 2, 1978 3.75"
April 13 - April 16, 1976 2.86"
October 27 - October 30, 1974 2.76"
July 28 - July 31, 1968 1.55"
November 22 - November 25, 1965 4.49"
April 1 - April 4, 1965 3.11"
March 22 - March 25, 1954 3.08"
January 25 - January 28, 1916 3.92"
July 24 - July 27, 1912 2.30"
December 14 - December 17, 1908 4.38"

GREATEST NUMBER OF CONSECUTIVE DAYS WITHOUT MEASURABLE(September 1898 - July 2002)

Period
99 September 24 - December 31, 1999
93 April 3-July 4, 1974
77 October 3 - December 18, 1903
77 September 10 - November 25, 1898
75 April 19 - July 2, 1996
69 April 21 - June 28, 1966

Days ... Period

67 April 27 - July 3, 2002
64 February 7-April 10, 1972
63 March 29-May 30, 1991
63 October 26 - December 27, 1989
61 May 10 - July 9, 1963

EXCESSIVE STORMS*

1898-2001
(tabulated only for storms* with 3.50 " or greater)

Davs	Period	Total Precip	Highest daily total
10			
8	February 13 - February 22, 1980	$7.80^{\prime \prime}$	$2.37^{\prime \prime}$
8	December 13 - December 20, 1967	$7.20^{\prime \prime}$	$2.32^{\prime \prime}$
5	February 14 - February 21, 1993	$6.48^{\prime \prime}$	$3.93^{\prime \prime}$
9	December 3 - December 7, 1966	$5.50^{\prime \prime}$	$2.87^{\prime \prime}$
8	January 6 - January 14, 1993	$5.40^{\prime \prime}$	$1.65^{\prime \prime}$
7	February 27 - March 6, 1978	$5.12^{\prime \prime}$	$1.41^{\prime \prime}$
5	October 31 - November 6, 1957	$4.76^{\prime \prime}$	$1.46^{\prime \prime}$
11	October 3 - October 7, 1972	$4.70^{\prime \prime}$	$1.70^{\prime \prime}$
7	January 9 - January 19, 1949	$4.51^{\prime \prime}$	$1.09^{\prime \prime}$
6	July 20 - July 26, 1915	$4.48^{\prime \prime}$	$1.19^{\prime \prime}$
9	January 25 - January 30, 1916	$4.32^{\prime \prime}$	$1.81^{\prime \prime}$
11	August 21 - August 29, 1904	$4.32^{\prime \prime}$	$1.44^{\prime \prime}$
7	July 10 - July 20, 1919	$4.29^{\prime \prime}$	$0.76^{\prime \prime}$
11	February 11 - February 17,1927	$4.20^{\prime \prime}$	$1.40^{\prime \prime}$
6	January 19 - January 29, 1969	$4.07^{\prime \prime}$	$1.30^{\prime \prime}$
11	October 15 - October 20,1972	$3.78^{\prime \prime}$	$1.52^{\prime \prime}$
17	February 7 - February 17, 1992	$3.74^{\prime \prime}$	$1.84 "$
6	July 20 - August 5, 1968	$3.74^{\prime \prime}$	$0.50^{\prime \prime}$
6	March 11 - March 16, 1982	$3.66^{\prime \prime}$	$1.91^{\prime \prime}$
7	February 27 - March 4, 1938	$3.60^{\prime \prime}$	$2.11^{\prime \prime}$
	January 14 - January 20, 1916	$3.50^{\prime \prime}$	$1.32^{\prime \prime}$

[^3](Midnight - Midnight)
September 1898 - July 2002

	JANUARY		FEBRUARY		MARCH		APRIL	
Date.	24 Hr Snow	Year	$24 \mathrm{Hr}$ Snow	Year	$\begin{aligned} & 24 \mathrm{Hr} \\ & \text { Snow } \end{aligned}$	Year	$24 \mathrm{Hr}$ Snow	Year
1.	9.8	1907	13.6	1990	26.0	1970	9.0	1999
2	6.2	1990	24.0	1901	9.5	1964	17.8	1997
3	10.0	1922	13.5	1901	11.9	1976	10.2	1965
4.	11.4	1989	10.5	1939	11.0	1923	9.8	1999
5.	12.1	1974	19.9	1976	6.1	1981	4.0	1999
6.	13.0	1992	15.2	1965	14.3	2000	7.2	2001
7.	16.5	1937	12.4	1901	7.6	2000	6.0	1998
8.	9.1	1985	11.0	1939	13.8	1992	7.4	1975
9 . ${ }^{\text {a }}$	8.8	1980	7.6	1959	8.9	1948	9.9	1965
10.	15.1	1949	15.0	1978	17.5	1969	7.8	1965
11.	10.0	1930	8.7	1973	19.3	1952	6.0	1967
12.	8.2	1960	6.1	1959	10.0	1973	12.0	1941
13 .	16.4	1997	9.5	1992	7.1	1990	5.4	1976
14	3.7	1993	13.0	1954	13.0	1944	7.8	1976
15	8.9	1978	10.0	1932	10.6	1987	5.0	1976
16.	13.0	1928	5.2	1975	17.6	1986	15.0	1917
17.	14.7	1988	4.8	1971	5.8	1963	10.0	1988
18	13.2	1980	16.0	1917	8.7	1982	9.3	1968
19.	11.0	1935	11.8	1990	9.0	1980	5.0	1966
20	7.1	1954	8.7	1987	7.8	1981	8.9	1995
21.	15.6	1982	10.0	\#1944	15.4	1991	11.1	1988
22.	7.5	1964	8.0	1913	12.2	1973	7.5	1988
23.	17.3	1943	6.0	1948	11.4	1964	3.2	1900
24.	19.9	1949	21.1	1987	11.2	1902	4.9	1994
25	16.0	1923	12.4	1998	12.0	1903	4.1	1994
26.	13.1	1948	6.1	1962	14.9	1991	8.5	1985
27.	16.0	1916	8.4	1951	6.6	1998	8.7	1994
28.	7.2	1979	11.0	1991	11.6	1973	10.1	1900
29.	18.0	1915	6.4	1960	12.8	1998	9.5	1951
30	9.6	1980			8.9	1970	10.0	1915
31	12.0	1922			6.9	1970		
Month	19.9	1949	24.0	1901	26.0	1970	17.8	1997

		GREA	DAI (M Septe	24-HO dnight mber 189	$\begin{aligned} & \text { OWFAI } \\ & \text { ght) } \\ & \text { y } 2002 \end{aligned}$	(INCE		
				UNE			AUC	
Date	24 Hr Snow	Year	24 Hr Snow	Year	$24 \mathrm{Hr}$ Snow	Year	24 Hr Snow	Year
1.	5.0	1915						
2	7.5	1901	TR	1992				
3.	9.0	1904	TR	1949				
4.	3.9	1905	TR	\#1999				
5	4.6	1969	TR	\#1999				
6 6	4.5	1949	TR					
. 7 .	2.1	1964	TR	1992				
8	4.7	1979	0.5	1907				
- 9.	0.5	1922						
10	TR	\#1991	TR	1949				
(11.	0.3	1957						
12.	2.0	1968						
-13.	3.1	1961						
14.	0.3	1998						
715.	6.0	1951						
. 16	1.9	1944						
17.	9.0	1903						
18.	0.2	1903						
. 19.	0.9	1917						
20	0.4	1975						
421	4.7	1975	TR	1947				
$\bigcirc 22$	TR	1975						
$\bigcirc 23$	0.3	1906						
- 24	6.6	1965						
25	TR	\#1996						
26	TR	1993						
$\bigcirc 27$	0.8	1962						
- 28	2.0	1962						
+29	2.5	1971						
30	TR	1988						
31	TR	\#1991						
Month	9.0	1903	0.5	1907	0.0	ALL	0.0	ALL
\# Occurre	d durin	previous					TRACE	

$\left.\begin{array}{ccccc} & \begin{array}{c}\text { MAXIMUM MONTHLY SNOWFALL } \\ \text { WITH YEAR OF OCCURRENCE }\end{array} \\ \text { (September 1898 - July 2002) }\end{array}\right)$

[^4]! Also occurred in earlier years.

MAXIMUM MONTHLY SNOWFALL WITH YEAR OF OCCURRENCE (September 1898 - July 2002)

	Normal*	Amount	Year
JULY	$0.0^{\prime \prime}$	0.01	ALL
AUGUST	0.0"	0.0"	ALL
SEPTEMBER	TR	2.0"	1965
		0.9"	1986
		0.3"	1905
		TR	1991
		TR	1990 !
OCTOBER	3.3 "	24.7"	1971
		19.0"	1920
		$16.6^{\prime \prime}$	1974
		$11.8{ }^{\prime \prime}$	1972
		11.0"	1996 !
NOVEMBER	12.2"	42.6"	1902
		40.7"	1985
		39.5"	1991
		30.3"	1919
		27:9"	1906
DECEMBER	13.8"	86.0"	1967
		66.3"	1915
	:	41.7'	1992
		38.5"	1965
		30.7"	1909

* Monthly normals calculated from period 1971-2000.
! Also occurred in earlier years.

1900	70.0"!	1935	44.1"	1970	95.7"
1901	124.5"	1936	16.0 "	1971	56.6 "
1902	76.8"	1937	97.6 "	1972	50.3"
1903	128.3"	1938	42.0"	1973	210.0"
1904	41.4"	1939	70.2"	1974	70.0 "
1905	92.2"	1940	48.4"	1975	141.1"
1906	63.8 "	1941	61.5"	1976	131.6"
1907	86.4"	1942	65.0"	1977	70.2"
1908	69.2"	1943	64.4"	1978	116.2"
1909	73.4"	1944	99.5"	1979	145.5"
1910	82.9"	1945	84.0"	1980	177.1"
1911	34.3 "	1946	51.5"	1981	$92.4{ }^{\prime \prime}$
1912	70.6"	1947	32.4"	1982	122.4"
1913	65.4"	1948	107.0"	1983	$142.6{ }^{\prime \prime}$
1914	39.6"	1949	167.0"	1984	32.0"
1915	$117.0^{\prime \prime}$	1950	63.3"	1985	136.0"
1916	129.5"	1951	73.8"	1986	105.4"
1917	111.1"	1952	105.9"	1987	121.6"
1918	28.7"	1953	60.0"	1988	104.5"
1919	69.8"	1954	84.0"	1989	77.7"
1920	74.7"	1955	67.8"	1990	113.4"
1921	53.3"	1956	42.7"	1991	127.9"
1922	96.6 "	1957	50.1"	1992	158.9"
1923	96.7"	1958	70.8"	1993	150.0"
1924	54.5"	1959	53.8"	1994	109.5"
1925	49.5"	1960	77.6	1995	99.1"!
1926	29.3"	1961	53.9"	1996	28.5"!
1927	48.7"	1962	128.5"	1997	107.5"!
1928	39.0"	1963	47.3"	1998	136.7"
1929	50.0"	1964	89.4"	1999	72.0 "
1930	57.3 "	1965	166.7"	2000	74.4"
1931	18.0"	1966	83.4"	2001	125.1"
1932	92.9"	1967	63.1 "	2002	38.9"
1933	66.0 "	1968	150.4"		
1934	11.2"	1969	134.7"		

[^5]15 SNOWIEST SEASONS
(July 1899 - June 2002)

Rank	$\underline{\text { Amount }}$	Year
1	$210.0^{\prime \prime}$	
2	$177.1^{\prime \prime}$	$1972-1973$
3	$167.0^{\prime \prime}$	$1979-1980$
4	$166.7^{\prime \prime}$	$1948-1949$
5	$158.9^{\prime \prime}$	$1964-1965$
6	$150.4^{\prime \prime}$	$1991-1992$
7	$150.0^{\prime \prime}$	$1967-1968$
8	$145.5^{\prime \prime}$	$1992-1993$
9	$142.6^{\prime \prime}$	$1978-1979$
10	$141.1^{\prime \prime}$	$1982-1983$
11	$136.7^{\prime \prime}$	$1974-1975$
12	$136.0^{\prime \prime}$	$1997-1998$
13	$134.7^{\prime \prime}$	$1984-1985$
14	$131.6^{\prime \prime}$	$1968-1969$
15	$129.5^{\prime \prime}$	$1975-1976$
		$1915-1916$

15 LEAST SNOWIEST SEASONS
(July 1899 - June 2002)

Rank	Amount	Year
1	$11.2^{\prime \prime}$	$1933-1934$
2	$16.0^{\prime \prime}$	$1935-1936$
3	$18.0^{\prime \prime}$	$1930-1931$
4	$28.5^{\prime \prime}$	$1995-1996$
5	$28.7^{\prime \prime}$	$1917-1918$
6	$29.3^{\prime \prime}$	$1925-1926$
7	$32.0^{\prime \prime}$	$1983-1984$
8	$32.4^{\prime \prime}$	$1946-1947$
9	$34.3^{\prime \prime}$	$1910-1911$
10	$38.9^{\prime \prime}$	$2001-2002$
11	$39.0^{\prime \prime}$	$1927-1928$
12	$39.6^{\prime \prime}$	$1913-1914$
13	$41.4^{\prime \prime}$	$1903-1904$
14	$42.0^{\prime \prime}$	$1937-1938$
15	$42.7^{\prime \prime}$	$1955-1956$

*AVERAGE YEARLY SNOWFALL: 109.4"

* Based on the 30 year average yearly snowfall from 1971-2000.
(January 1899- July 2002)
(tabulated only for storms* with 25 " or greater)

Days	Period	Total Snow	Highest daily total
8	December 13 - December 20, 1967	84.6"	26.8"
3	December 29 - December 31, 1915	54.0 "	31.0"
9	January 9 - January 17, 1949	48.4"	15.1"
4	February 1 - February 4, 1901	47.4"	24.0"
4	January 22 - January 25, 1949	43.5"	19.9"
5	April 1-April 5, 1999	41.3"	11.0"
6	January 25 - January 30, 1916	39.0"	16.0"
4	November 20 - November 23, 1902	38.6 "	20.0"
6	February 6 - February 11, 1901	$33.6{ }^{\prime \prime}$	12.4"
4	February 28 - March 3, 1970	33.3 "	26.0"
6	April 7 - April 12, 1965	32.6 "	9.9 "
8	December 25 - January 1, 1937	32.2"	10.8"
4	February 23 - February 26, 1987	31.2"	21.1"
5	January 14 - January 18, 1979	30.7"	14.3"
5	April 1 - April 5, 1997	29.7"	17.8"
8	January 15 - January 22, 1917	29.7"	12.0"
4	April 13 - April 16, 1976	28.7"	10.5"
6	March 5 - March 10, 2000	28.3"	14.3"
3	April 15 - April 17, 1917	27.5"	15.0 "
3	November 23 - November 25, 1906	27.2"	15.5"
3	January 28 - January 30, 1980	27.1"	15.3"
3	February 4 - February 6, 1976	26.9"	19.9"
6	January 20 - January 25, 1962	26.7"	13.7"
9	December 30 - January 7, 1982	26.6"	9.4 "
5	January 10 - January 14, 1930	26.5"	10.0"
5	March 26 - March 30, 1998	26.4"	12.8"
2	November 27 - November 28, 1919	26.0"	23.0 "
3	January 22 - January 24, 1943	25.9"	17.3"
5	April 1 - April 5, 1965	25.7"	10.2"
3	November 27 - November 29, 1975	25.2"	14.2"

[^6]AVERAGE NUMBER OF DAYS WITH SNOWFALL OF 1 INCH OR MORE (1971-2000)
JANUARY 4.6

FEBRUARY . 4.5
MARCH 5.4
APRIL 2.5
MAY : 0.4
JUNE $\quad 0$
JULY $\quad 0$
AUGUST 0
SEPTEMBER *
OCTOBER 0.8
NOVEMBER 2.6
DECEMBER 3.5
ANNUAL 24.3

AVERAGE NUMBER OF DAYS WITH THUNDERSTORMS (1965-1994)

JANUARY *
FEBRUARY 0.3
MARCH 0.6
APRIL 1.3
MAY 2.6
JUNE 3.7
JULY 16.4
AUGUST 15.6
SEPTEMBER 6.7
OCTOBER 2.2
NOVEMBER 0.6
DECEMBER 0.2
ANNUAL 50.1

[^7]IV. MISCELLANEOUS INFORMATION

	Sunshine		Sky Cover (Sunrise - Sunset)			Dense Fog
Month	Percent Possible Sunshine	Avg Amt of Sky Cover	Clear	Partly Cloudy	Cloudy	Number of Days
January	77\%	5.2	12.4	6.3	12.3	1.8
February	73\%	5.3	10.7	6.0	11.5	1.8
March	76\%	5.3	11.6	7.8	11.6	1.6
April	82\%	4.7	12.4	8.8	8.7	1.2
May	88\%	4.1	15.2	9.3	6.5	0.2
June	86\%	3.0	18.5	7.7	3.9	0
July	75\%	5.3	9.1	13.1	8.8	0.2
August	76\%	5.1	9.8	13.1	8.1	0.3
September	81\%	3.7	15.7	9.6	4.7	0.5
October	79\%	3.6	17.1	7.0	6.9	0.9
November	75\%	4.2	15.4	6.6	8.0	1.2
December	73\%	4.8	13.9	6.5	10.7	1.9
Annual	78\%	4.5	161.8	101.7	101.6	11.5

Dense fog is when the visibility is restricted to $1 / 4$ mile or less for at least part of the day. Sky cover is expressed in a range from 0 to 10 , with 0 representing no clouds or obscuring phenomena, and 10 representing a complete sky cover. A further break-down is as follows:

Clear	$0 / 10$ to $3 / 10$ sky cover
Partly Cloudy	$4 / 10$ to $7 / 10$ sky cover
Cloudy	$8 / 10$ to $10 / 10$ sky cover

NORMAL HEATING DEGREE DAYS FOR FLAGSTAFF

 (1971-2000)JANUARY 1099
FEBRUARY 930
MARCH 880
APRIL 668
MAY 446
JUNE 174
JULY 33
AUGUST 56
SEPTEMBER 224
OCTOBER 554
NOVEMBER 850
DECEMBER 1085
ANNUAL 6999
NORMAL COOLING DEGREE DAYS FOR FLAGSTAFF
(1971-2000)

JANUARY	0
FEBRUARY	0
MARCH	0
APRIL	0
MAY	0
JUNE	23
JULY	64
AUGUST	36
SEPTEMBER	3
OCTOBER	0
NOVEMBER	0
DECEMBER	0
ANNUAL	126

A degree day is a measure of the departure of the average daily temperature from 65 degrees. Each degree that the daily temperature is below 65 degrees is equal to one heating degree day. Each degree that the daily temperature is above 65 degrees is equal to one cooling degree day. For example, if the average temperature on a particular day was 55 degrees, the heating degree days would then be $65-55=10$ heating degree days. If the average daily temperature was 72 degrees, the cooling degree days would then be $72-65=7$ cooling degree days. Each day of the month would be calculated in the same fashion, with negative differences counted as zero.

Heating and cooling degree days are useful in the computation of fuel and power consumption and are used by utility companies to determine heating and cooling requirements.

NORMALS
 FLAGSTAFF, AZ

1971 to 2000
Latitude: $\quad 35^{\circ} 08^{\prime} \mathrm{N}$
Longitude: $111^{\circ} 40^{\prime} \mathrm{W}$
Elevation: 7003 Feet

The daily values presented in these tables are not simple means of observed daily values. They are interpolated using a much less variable set of monthly normals calculated using the natural spline function.

In leap years, use the February 28th values for the 29th, and adjust the heating degree monthly totals accordingly.

Daily precipitation normals were also computed using the natural spline function and do not exhibit the typical daily random fluctuations. However, they may be used to compute normal precipitation over time intervals.

NORMALS
 FLAGSTAFF, AZ

1971 to 2000
Latitude: $\quad 35^{\circ} 08^{\prime} \mathrm{N}$ Longitude: $111^{\circ} 40^{\prime} \mathrm{W}$ Elevation: 7003 Feet

JANUARY

	TEMPERATURE			DEGREE DAYS	PRECIPITATION
DATE	$\frac{\text { MAX }}{}$	$\frac{\text { MIN }}{16}$	$\frac{\text { AVG }}{2}$	$\frac{\text { HDD }}{36}$	$\frac{\text { CDD }}{}$

NORMALS FLAGSTAFF, AZ
1971 to 2000
Latitude: $\quad 35^{\circ} 08^{\prime} \mathrm{N}$
Longitude: $111^{\circ} 40^{\prime} \mathrm{W}$
Elevation: 7003 Feet

FEBRUARY

	TEMPERATURE			DEGREE DAYS		PRECIPITATION
DATE	MAX	MIN	AVG	HDD	CDD	DAILY
1	44	17	31	35	0	. 08
2	44	18	31	35	0	. 08
3	44	18	31	34	0	. 08
4	44	18	31	34	0	. 09
5	44	18	31	34	0	. 09
6	45	18	31	34	0	. 09
7	45	18	31	34	0	. 09
8	45	18	31	34	0	. 09
9	45	18	32	34	0	. 09
10	45	18	32	34	0	. 09
11	45	18	32	34	0	. 09
12	45	18	32	34	0	. 09
13	45	19	32	34	0	. 09
14	46	19	32	33	0	. 09
15	46	19	32	33	0	. 09
16	46	19	32	33	0	. 09
17	46	19	32	33	0	. 09
18	46	19	33	33	0	. 09
19	46	19	33	33	0	. 09
20	46	19	33	33	0	. 09
21	46	19	33	32	0	. 09
22	47	20	33	32	0	. 10
23	47	20	33	32	0	. 10
24	47	20	33	32	0	. 10
25	47	20	33	32	0	. 10
26	47	20	34	32	0	. 10
27	47	20	34	32	0	. 10
28	47	20	34	31	0	. 10
TOTAL				930	0	2.56
AVG	45.6	18.8	32.2			

In leap years, use the February 28 values for February 29 and adjust the monthly totals.

NORMALS
FLAGSTAFF, AZ

1971 to 2000

Latitude: $\quad 35^{\circ} 08^{\prime} \mathrm{N}$ Longitude: $111^{\circ} 40^{\prime} \mathrm{W}$ Elevation: 7003 Feet

MARCH

	TEMPERATURE			DEGREE DAYS		PRECIPITATION DAILY
DATE	MAX	MIN	AVG	HDD	CDD	
1	47	21	34	31	0	. 10
2	48	21	34	31	0	. 10
3	48	21	34	31	0	. 10
4	48	21	35	31	0	. 10
5	48	21	35	30	0	. 09
6	48	21	35	30	0	. 09
7	48	22	35	30	0	. 09
8	48	22	35	30	0	. 09
9	49	22	35	30	0	. 09
10	49	22	36	29	0	. 09
11	49	22	36	29	0	. 09
12	49	22	36	29	0	. 09
13	49	22	36	29	0	. 09
14	50	23	36	29	0	. 09
15	50	23	36	29	0	. 09
16	50	23	37	28	0	. 09
17	50	23	37	28	0	. 09
18	51	23	37	28	0	. 08
19 \%	51	23	37	28	0	. 08
20	51	23	37	28	0	. 08
21	51	23	37	-27	0	. 08
22	51	24	38	27	0	. 08
23	52	24	38	27	0	. 08
24	52	24	38	27	0	. 08
25	52	24	38	27	0	. 08
26	53	24	38	27	0	. 07
27	53	24	39	26	0	. 07
28	53	24	39	26	0	. 07
29	53	25	39	26	0	. 07
30	54	25	39	26	0	. 07
31	54	25	39	26	0	. 06
TOTAL				880	0	2.62
AVG	50.3	22.8	36.6			

NORMALS
FLAGSTAFF, AZ
1971 to 2000
Latitude: $\quad 35^{\circ} 08^{\prime} \mathrm{N}$
Longitude: $111^{\circ} 40^{\prime} \mathrm{W}$
Elevation: 7003 Feet

APRIL

	TEMPERATURE			DEGREE DAYS		PRECIPITATION
DATE	MAX	MIN	AVG	HDD	CDD	DAILY
1	54	25	40	25	0	. 06
2	55	25	40	25	0	. 06
3	55	25	40	25	0	. 06
4	55	25	40	25	0	. 06
5	55	25	40	25	0	. 06
6	56	26	41	24	0	. 05
7	56	26	41	24	0	. 05
8	56	26	41	24	0	. 05
9	57	26	41	24	0	. 05
10	57	26	42	24	0	. 05
11	57	26	42	23	0	. 05
12	57	27	42	23	0	. 04
13	58	27	42	23	0	. 04
14	58	27	43	23	0	. 04
15	58	27	43	22	0	. 04
16	59	27	43	22	0	. 04
17	59	27	43	22	0	. 04
18	59	28	43	22	0	. 04
19	59	28	44	22	0	. 04
20	60	28	44	21	0	. 04
21	60	28	44	21	0	. 04
22	60	28	44	21	0	. 04
23	61	29	45	21	0	. 04
24	61	29	45	20	0	. 03
25	61	29	45	20	0	. 03
26	61	29	45	20	0	. 03
27	62	30	46	20	0	. 03
28	62	30	46	19	0	. 03
29	62	30	46	19	0	. 03
30	62	30	46	19	0	. 03
TOTAL				668	0	1.29
AVG	58.4	27.3	42.9			

NORMALS
 FLAGSTAFF, AZ

1971 to 2000
Latitude: $\quad 35^{\circ} 08^{\prime} \mathrm{N}$ Longitude: $111^{\circ} 40^{\prime} \mathrm{W}$ Elevation: 7003 Feet

MAY

	TEMPERATURE			DEGREE DAYS		PRECIPITATION DAILY
DATE	MAX	MIN	AVG	HDD	CDD	
1	63	31	47	19	0	. 03
2	63	31	47	18	0	. 03
3	63	31	47	18	0	. 03
4	64	31	47	18	0	. 03
5	64	31	48	18	0	. 03
6	64	32	48	- 17	0	. 03
7	64	32	48	17	0	. 03
8	65	32	48	17	0	. 03
9	65	32	49	16	0	. 03
10	65	33	49	16	0	. 03
11	66	33	49	16	0	. 03
12	66	33	50	16	0	. 03
13	66	33	50	15	0	. 03
14	67	34	50	15	0	. 03
15	67	34	50	15	0	. 03
16	67	34	51	14	0	. 03
17	68	34	51	- 14	0	. 03
18	68	35	51	14	0	. 03
19	68	35	52	14	0	. 03
20	69	35	52	13	0	. 03
21	69	35	52	13	0	. 02
22	70	35	53	-13	0	. 02
23	70	36	53	12	0	. 02
24	70	36	53	12	0	. 02
25	71	36	53	12	0	. 02
26	71	36	54	11	0	. 02
27	72	36	54	11	0	. 02
28	72	37	-54	11	0	. 02
29	73	37	55	11	0	. 02
30	73	37	55	10	0	. 01
31	73	37	55	10	0	. 01
TOTAL				446	0	0.80
AVG	67.6	34.0	50.8			

NORMALS
 FLAGSTAFF, AZ

1971 to 2000
Latitude: $\quad 35^{\circ} 08^{\prime} \mathrm{N}$
Longitude: $111^{\circ} 40^{\prime} \mathrm{W}$
Elevation: 7003 Feet

JUNE

DATE	TEMPERATURE			DEGREE DAYS		PRECIPITATION DAILY
	MAX	MIN	AVG	HDD	CDD	
1	74	37	56	10	0	. 01
2	74	38	56	9	0	. 01
3	75	38	56	9	0	. 01
4	75	38	57	9	0	. 01
5	76	38	57	8	0	. 01
6	76	39	57	8	0	. 01
7	76	39	58	8	0	. 01
8	77	39	58	8	0	. 00
9	77	39	58	7	0	. 00
10	78	40	59	7	1	. 00
11	77	40	59	7	1	. 00
12	78	40	59	6	1	. 01
13	78	40	59	6	1	. 01
14	79	41	60	6	1	. 01
15	79	41	60	6	1	. 01
16	79	41	60	5	1	. 01
17	80	42	61	5	1	. 01
18	80	42	61	5	1	. 01
19	80	42	61	5	1	. 01
20	80	43	61	5	1	. 01
21	80	43	62	4	1	. 02
22	81	43	62	4	1	. 02
23	81	44	62	4	1	. 02
24	81	44	63	4	1	. 02
25	81	44	63	4	1	. 02
26	81	45	63	3	1	. 03
27	81	45	63	3	1	. 03
28	82	45	64	3	1	. 03
29	82	46	64	3	2	. 04
30	82	46	64	3	2	. 04
TOTAL				174	23	0.43
AVG	78.7	41.4	60.1			

NORMALS
FLAGSTAFF, AZ

1971 to 2000
Latitude: $\quad 35^{\circ} 08^{\prime} \mathrm{N}$
Longitude: $111^{\circ} 40^{\prime} \mathrm{W}$ Elevation: 7003 Feet

JULY

	TEMPERATURE			DEGREE DAYS		PRECIPITATION
DATE	MAX	MIN	AVG	HDD	CDD	DALLY
1	82	47	64	2	2	. 04
2	82	47	64	2	2	. 05
3	82	47	65	2	2	. 05
4	82	48	65	2	2	. 05
5	82	48	65	2	2	. 06
6	82	48	65	2	2	. 06
7	82	49	65	2	2	. 06
8	82	49	66	2	2	. 06
9	82	49	66	1	2	. 07
10	82	49	66	1	2	. 07
11	82	50	66	1	2	. 07
12	83	50	66	1	2	. 07
13	83	50	66	1	2	. 08
14	83	50	66	1	2	. 08
15	83	50	66	1	2	. 08
16	83	50	66	1	2	. 08
17	83	51	67	1	2	. 08
18	82	51	67	1	3	. 08
19	82	51	67	1	3	. 09
20	82	51	67	1	2	. 09
21	82	51	67	1	2	. 09
22	82	51	67	1	2	. 09
23	82	51	67	1	2	. 09
24	82	51.	67	0	2	. 09
25	82	51	67	0	2	. 09
26	82	51	67	0	2	. 09
27	82	51	67	0	2	. 09
28	82	51	67	0	2	. 10
29	82	51	66	0	2	. 10
30	82	51	66	1	2	. 10
31	82	51	66	1	2	. 10
TOTAL				33	64	2.40
AVG	82.2	49.9	66.1			

NORMALS
FLAGSTAFF, AZ

1971 to 2000

Latitude: $\quad 35^{\circ} 08^{\prime} \mathrm{N}$
Longitude: $111^{\circ} 40^{\prime} \mathrm{W}$
Elevation: 7003 Feet

AUGUST

	TEMPERATURE			DEGREE DAYS		PRECIPITATION
DATE	MAX	MIN	AVG	$\underline{\mathrm{HDD}}$	CDD	DALLY
1	82	51	66	1	2	. 10
2	81	51	66	1	2	. 10
3	81	51	66	1	2	. 10
4	81	51	66	1	2	. 10
5	81	51	66	1	2	. 10
6	81	51	66	1	1	. 10
7	81	51	66	1	1	. 10
8	81	50	66	1	1	. 10
9	81	50	66	1	1	. 10
10	81	50	65	1	1	. 10
11	80	50	65	1	1	. 10
12	80	50	65	1	1	. 10
13	80	50	65	1	1	. 10
14	80	50	65	1	1	. 09
15	80	49	65	1	1	. 09
16	80	49	65	2	1	. 09
17	80	49	64	2	1	. 09
18	80	49	64	2	1	. 09
19	79	49	64	2	1	. 09
20	79	49	64	2	1	. 09
21	79	48	64	2	1	. 09
22	79	48	64	2	1	. 09
23	79	48	63	2	1	. 09
24	79	48	63	3	1	. 09
25	78	48	63	3	1	. 09
26	78	47	63	3	1	. 09
27	78	47	63	3	1	. 09
28	78	47	62	3	1	. 09
29	78	47	62	3	1	. 08
30	78	47	62	3	1	. 08
31	78	46.	62	4	1	. 08
TOTAL				56	36	2.89
AVG	79.7	49.1	64.4			

NORMALS
FLAGSTAFF, AZ
1971 to 2000
Latitude: $\quad 35^{\circ} 08^{\prime} \mathrm{N}$ Longitude: $111^{\circ} 40^{\prime} \mathrm{W}$ Elevation: 7003 Feet

SEPTEMBER

	TEMPERATURE			DEGREE DAYS		PRECIPITATION
DATE	MAX	MIN	AVG	HDD	CDD	DALLY
1	77	46	62	4	1	. 08
2	77	46	61	4	1	. 08
3	77	45	61	4	1	. 08
4	77	45	61	4	0	. 08
5	77	45	61	5	0	. 08
6	76	45	61	5	0	. 08
7	76	44	60	5	0	. 08
8	76	44	60	5	0	. 08
9	76	44	60	6	0	. 07
10	75	44	60	6	0	. 07
11	75	43	59	6	0	. 07
12	75	43	59	6	0	. 07
13	75	43	59	7	0	. 07
14	74	42	58	7	0	. 07
15	74	42	58	7	0	. 07
16	74	42	58	7	0	. 07
17	74	41	58	8	0	. 07
18	73	41	57	8	0	. 07
19	73	41	57	8	0	. 07
20	73	40	57	9	0	. 07
21	72	40	56	9	0	. 07
22	72	40	56	9	0	. 07
23	72	39	56	9	0	. 07
24	72	39	55	10	0	. 07
25	71	39	55	10	0	. 06
26	71	38	55	- 10	0	. 06
27	71	38	54	11	0	. 06
28	70	38	54	11	0	. 06
29	70	37	53	12	0	. 06
30	69	37	53	12	0	. 06
TOTAL				224	3	2.12
AVG	73.8	41.7	57.8			

> NORMALS
> FLAGSTAFF, AZ

1971 to 2000
Latitude: $\quad 35^{\circ} 08^{\prime} \mathrm{N}$
Longitude: $111^{\circ} 40^{\prime} \mathrm{W}$
Elevation: 7003 Feet

OCTOBER

	TEMPERATURE			DEGREE DAYS		PRECIPITATION
DATE	MAX	MIN	$\underline{\text { AVG }}$	HDD	CDD	DAILY
1	69	36	53	12	0	. 07
2	69	36	52	13	0	. 07
3	68	36	52	13	0	. 07
4	68	35	52	13	0	. 07
5	68	35	51	14	0	. 07
6	67	35	51	14	0	. 07
7	67	34	50	15	0	. 07
8	66	34	50	15	0	. 06
9	66	33	50	15	0	. 06
10	66	33	49	16	0	. 06
11	65	33	49	16	0	. 06
12	65	32	49	16	0	. 06
13	64	32	48	17	0	. 06
14	64	32	48	17	0	. 06
15	64	31	47	18	0	. 06
16	63	31	47	18	0	. 06
17	63	31	47	18	0	. 06
18	62	30	46	19	0	. 06
19	62	30	46	19	0	. 06
20	62	30	46	19	0	. 06
21	61	29	45	20	0	. 06
22	61	29	45	20	0	. 06
23	60	29	44	20	0	. 06
24	60	28	44	21	0	. 06
25	59	28	44	21	0	. 06
26	59	28	43	22	0	. 06
27	58	27	43	22	0	. 06
28	58	27	43	22	0	. 06
29	58	27	42	23	0	. 06
30	57	27	42	23	0	. 06
31	57	26	42	23	0	. 06
TOTAL				554	0	1.93
AVG	63.1	31.1	47.1			

NORMALS
FLAGSTAFF, AZ

1971 to 2000
Latitude: $\quad 35^{\circ} 08^{\prime} \mathrm{N}$ Longitude: $111^{\circ} 40^{\prime} \mathrm{W}$ Elevation: 7003 Feet

NOVEMBER

	TEMPERATURE			DEGREE DAYS		$\begin{gathered} \text { PRECIPITATION } \\ \text { DALY } \end{gathered}$
DATE	MAX	MIN	AVG	HDD	CDD	
1	56	26	41	24	0	. 06
2	56	26	41	24	0	. 06
3	55	25	40	24	0	. 06
4	55	25	40	25	0	. 06
5	55	25	40	25	0	. 06
6	54	24	39	25	0	. 07
7	54	24	39	26	0	. 07
8	53	24	39	26	0	. 07
9	53	24	38	26	0	. 07
10	53	23	38	27	0	. 07
11	52	23	38	27	0	. 07
12	52	23	37	27	0	. 06
13	51	23	37	28	0	. 06
14	51	22	37	28	0	. 06
15	51	22	36	28	0	. 06
16	50	22	36	29	0	. 06
17	50	22	36	29	0	. 06
18	50	21	36	29	0	. 06
19	49	21	35	30	0	. 06
20	49	21	35	30	0	. 06
21	49	21	35	30	0	. 06
22	48	21	35	30	0	. 06
23	48	20	34	31	0	. 06
24	48	20	34	31	0	. 06
25	48	20	34	31	0	. 06
26	47	20	33	31	0	. 06
27	47	19	33	32	0	. 06
28	47	19	33	32	0	. 06
29	47	19	33	32	0	. 06
30	46	19	33	33	0	. 06
TOTAL				850	0	1.86
AVG	50.8	22.1	36.5			

NORMALS
FLAGSTAFF, AZ

1971 to 2000
Latitude: $\quad 35^{\circ} 08^{\prime} \mathrm{N}$
Longitude: $111^{\circ} 40^{\prime} \mathrm{W}$
Elevation: 7003 Feet

DECEMBER

	TEMPERATURE			DEGREE DAYS		PRECIPITATION
DATE	MAX	MIN	AVG	HDD	CDD	DAILY
1	46	18	32	33	0	. 06
2	46	18	32	33	0	. 06
3	46	18	32	33	0	. 06
4	45	18	32	33	0	. 06
5	45	18	32	34	0	. 06
6	45	18	31	34	0	. 06
7	45	17	31	34	0	. 06
8	45	17	31	34	0	. 06
9	44	16	31	34	0	. 06
10	44	16	31	34	0	. 06
11	44	16	31	35	0	. 06
12	44	16	30	35	0	. 05
13	44	16	30	35	0	. 05
14	44	16	30	35	0	. 05
15	44	15	30	35	0	. 06
16	43	16	30	35	0	. 06
17	43	16	30	35	0	. 06
18	43	16	30	36	0	. 06
19	43	16	30	36	0	. 06
20	43	16	30	36	0	. 06
21	43	16	30	36	0	. 06
22	43	16	29	36	0	. 06
23	43	16	29	36	0	. 06
24	43	16	29	36	0	. 06
25	43	16	29	36	0	. 06
26	43	16	29	36	0	. 06
27	43	16	29	36	0	. 06
28	42	16	29	36	0	. 06
29	42	16	29	36	0	. 06
30	42	16	29	36	0	. 06
31	42	16	29	36	0	. 06
TOTAL				1085	0	1.83
AVG	43.7	16.6	30.2			

o , 0
Location: W111 37, N35 13
FLAGSTAFF, ARIZONA
Rise and Set for the Sun

Mountain Standard Time

	Jan.		Feb.		ar.		pr.		May		une		July		Aug.		Sept.		oct.		Nov.		Dec.	
Day	$\begin{array}{r} \text { Rise } \\ \text { h } \mathrm{m} \end{array}$	$\begin{aligned} & \text { Set } \\ & \mathrm{h} \mathrm{~m} \end{aligned}$	Rise h m	Set h m	Rise h m	Set h m	$\begin{gathered} \text { Rise } \\ \mathrm{h} \text { m } \end{gathered}$	Set h m	$\begin{array}{r} \text { Rise } \\ \mathrm{h} \mathrm{~m} \end{array}$	Set h m	Rise h m	Set h m	Rise h m	Set h m	Rise h m	Set h m	Rise h.m	Set h m	Rise h m	Set h m	ise	Set h m	Rise h m	
	0735	1725	0726	1755	0656	182.2	0613	1848	0535	1912	-0513	1936	0516	1.945	0.535	1930	0559	1853	0621	1810	648	1732	17	
02	0735	1726	0725	1756	0655	1823	0612	1849	0534	1913	0513	1936.	0516	1945	0536	1929	0600	1852	0622	1809	0649	1731	17	1714
03	0735	1727	0724	1757	0654	1824	0611	1850	0533	1914	0513	1937	0517	1945	0537	1928	0600	1851	0623	1808	0650	1730	0718	1714
04	0736	1728	0723	1758	52	1825	609	1850	0532	1915	0512	1937	0517	1945	0538	1927	0601	1849	0624	1806	0651	1729	0719	1714
05	0736	1729	0722	1759	0651	1826	0608	1851	0531	1916	0512	1938	0517	1944	0539	1926	0602	1848	0624	1805	0652	1728	0720	714
06	0736	1729	0722	1800	0650	1826	0606	1852	0530	1916	0512	1939	0518	1944	0539	1925	0603	1846	0625	1803	0653	1727	0721	1714
07	0736	1730	0721	1801	648	1827	0605	1853	0529.	1917	0512	1939	0519	1944	0540	1924	0603	1845	0626	1802	0654	1726	0722	1714
08	0736	1731	0720	1802	0647	1828	0604	1854	0528	1918	0512	1940	0519	1944	0541	1923	0604	1844	0627	1801	0655	1726	0722	1714
9	0736	1732	719	803	46	1829	602	854	0528	1919	0512	1940	0520	1944	0542	1922	0605	1842	0628	1759	0655	1725	0723	1714
10	0735	1733	0718	1804	0644	1830	0601	1855	0527	1920	0511	1941	0520	1943	0542	1921	0606	1841	0628	1758	0656	1724	0724	14
11	0735	1734	0717	1805	0643	1831	0600	1856	0526	1920	0511	1941	0521	1943	0543	1920	0606	1839	0629	1757	0657	1723	0725	1715
12	0735	1735	0716	1806	-0641	1832	0558	1857	0525	1921	0511	1941	0521	1943	0544	1919	0607	1838	0630	1755	0658	1723	0726	1715
13	0735	1736	0715	1807	0640	1832	0557	1858	0524	1922	0511	1942	0522	1942	0545	1917	0608	1836	0631	1754	0659	1722	0726	15
14	0735	1737	0714	1808	0639	1833	0556	1858	0523	1923	0511	1942	0523	1942	0545	1916	0608	1835	0632	1753	0700	1721	0727	15
15	0735	1738	0713	1809	0637	1834	0554	859	0522	1924	0511	1943	0523	1941	0546	1915	0609	1833	0633	1751	070	17	0728	
16	0734	1739	0712	1810	0636	1835	0553	1900	0522	1924	0512	1943	0524	1941	0547	1914	0610	1832	0633	1750	0702	1720	0728	1716
17	0734	1740	071	1811	0634	1836	0552	1901	0521	1925	0512	1943	0525	1940	0548	1913	061	1831	063	1749	0703	1719	0729	1716
18	0734	1741	0709	1812	0633	1837	0551	1902	0520	1926	0512	1944	0525	1940	0548	1912	0611	1829	0635	1748	0704	1719	0729	17
19	0733	1742	708	1813	0632	1837	0549	1902	0520	1927	0512	1944	0526	1939	0549	1910	0612	1828	0636	1746	0705	1718	0730	1717
20	0733	1743	0707	1814	0630	1838	0548	1903	0519	1927	0512	1944	0527	1939	0550	1909	0613	1826	0637	1745	0706	1718	73	18
21	0732	1744	70	1815	0629	1839	0547	1904	0518	1928	0512	1944	0527	1938	0551	1908	061	1825	0638	1744	070	1717	073	1718
22	0732	1745	0705	1816	0627	1840	0546	1905	0518	1929	0513	1944	0528	1937	0551	1907	0614	1823	0639	1743	0708	1717	073	171
23	0731	1746	0704	1817	0626	1841	0544	1906	0517	1930	0513	1945	0529	1937	0552	1905	0615	1822	0640	1742	0709	1716	0732	1719
24	0731	1747	0702	1817	0625	1841	0543	1907	0517	1930	0513	1945	0530	1936	0553	1904	0616	1820	0640	1740	0710	1716	0733	1720
25	0730	1748	0701	1818	0623	1842	0542	1907	0516	1931	0513	1945	0530	1935	0554	1903	0617	1819	0641	1739	0711	1716	0733	1720
26	0730	1749	0700	1819	0622	1843	0541	1908	0516	1932	0514	1945	0531	1935	0554	1901	0617	1818	0642	1738	0712	1715	0733	172
27	0729	1750	0659	1820	0620	1844	0540	1909.	0515	1932	0514	1945	0532	1934	0555	1900	0618	1816	0643	1737	0713	1715	0734	1722
28	0729	1751	0657	1821	0619	1845	0539	1910	0.515	1933	0514	1945	0532	1.933	0556	1859	0619	1815	0644	1736	0714	1715	0734	1722
29	0728	1752			0618	1846	0538	1911	0514	1934	0515	1945	0533	1932	0557	1857	0620	1813	0645	1735	0715	1715	0734	1723
30	0727	1753			0616	1846	0536	1911	0514	1934	0515	1945	0534	1931	0557	1856	0620	1812	0646	1734	0716	1714	0735	1724
31	0726	1754			0615	1847			0514	1935			0535	1931	0558	1855			0647	1733				

This table uses military time, so 1930 actually means $7: 30 \mathrm{p} . \mathrm{m}$.
This table may be used for the next ten years with an error not exceeding two minutes.

Baruch Fischhoff, and Robert L. Winkler, February 1980. (PB80 174576)
150 Annual Data and Verification Tabulation - Eastern and Central Nont Pacific Tropical Storms and Hurricanes 1979. Emil B. Gunther and Staff, EPHC, April 1980. (PB80 220486)

151 NMC Model Performance in the Northeast Pacific. James E. Overand, PMEL-ERL, April 1980. (PB80 196033)
152 Climate of Salt Lake City, Utah. William J. Alder, Sean T. Buchanan, William Cope (Retired), James A. Cisco, Graig C. Schmict, Alexander R. Smith (Retired), Wilbur E. Figgins (Retired), February 1998 - Seventh Revision (PE98-130727)

153 An Automatic Lighning Detection System in Northem Califoria. James E. Rea and Chris E Fontana, June 1980. (PB80 225592)
154 Regression Equation for the Peak Wind Gust 6 to 12 Hours in Advance at Great Falls During Strong Downslope Wind Stoms. Michael J. Oard, July 1980. (PB91 108367)
155 A Raininess Index for the Arizona Monsoon. John H. Ten Harkel, July 1980. (PB81 106494)
156 The Effects of Terrain Distribution on Surmmer Thunderstorm Activity at Reno, Nevada. Christopher The Effects of Terrain Distribution on
Dean Hill, July 1980. (PB81 102501)
157 An Operational Evaluation of the Scofield/Oliver Technique for Estimating Precipitation Rates from Satellite Imagery. Richard Ochoa, August 1980. (PB81 108227)
158 Hydrology Practicum. Thomas Dietrich, September 1980. (PE81 134033)
159 Tropical Cyelone Effects on Califomia. Amold Court, October 1980. (PBB1 133779)
160 Eastern North Pacific Tropical Cycione Occurrences During Intraseasonal Periods. Preston W. Leftwich and Gail M. Brown, February 1981. (PB81 205494)
161 Solar Radiation as a Sole Source of Energy for Photovoltaics in Las Vegas, Nevada, for July and December. Darryl Randerson, April 1981. (PB81 224503)
162 A Systems Approach to Real-Time Runotf Analysis with a Deterministic Rainfall-Runoff Model. Robert J.C. Bumash and R. Larry Ferral, April 1981. (PB81 224495)
163 AComparison of Two Methods for Forecasting Thunderstorms at Luke Air Force Base, Arizona. LTC Keith R. Cooley, April 1981. (PB81 225393)
164 An Objective Aid tor Forecasting Afternoon Relative Humidity Along the Washington Cascade East Slopes. Robert S. Robinson, April 1981. (PB81 23078)
165 Annual Data and Verification Tabuiation, Eastern North Pacitic Tropical Storms and Hurricanes 1980. Emil B. Gunther and Staff, May 1981. (PB82 230336)
166 Preliminary Estimates of Wind Power Potential at the Nevada Test Site. Howard G. Booth, June 1981. (PB82 127036)

167 ARAP User's Guide. Mark Mathewson, July 1981, Revised September 1981. (PB82 196783)
168 Forecasting the Onset of Coastal Gales Off Washington-Oregon. John R. Zimmerman and William D. Burton, August 1989. (PB82 127051)

169 AStatistical-Dynamical Model for Preciction of Tropical Cyclone Motion in the Eastern North Pacific Ocean. Preston W. Leftwich, Jr., October 1981. (PB82195298)
170 An Enhanced Plotter for Surface Airways Observations. Andrew J. Spry and Jeffrey L. Anderson, October 1981. (PB82 153883)
171 Verification of 72-Hour 500-MB Map-Type Predictions. R.F. Quiring, November 1981. (PB82-158098)
172 Forecasting Heavy Snow at Wenatchee, Washington. James W. Holcornb, December 1981. (PE82-177783)
173 Central San Joaquin Valley Type Maps. Thomas R. Crossan, Decerrber 1981. (PB82 196064)
174 ARAP Test Results. Mark A. Mathewson, December 1981. (PB82 198103)
174 ARAP Test Results. Mark A. Mathewson, December 1981. (PB82 198103)
176 Approximations to the Peak Surface Wind Gusts from Desert Thunderstorms. Darryl Randerson, June 1982. (PB82 253089)
177 Climate of Phoenix, Arizona. Robert J. Schmidli and Austin Jamison, April 1969 (Revised July 1996). (PB96-191614)
178 Annual Data and Verification Tabulation, Eastern North Pacific Tropical Storms and Hurricanes 1982. E.B. Gunther, June 1983. (PB85 106078)

179 Stratified Maximum Temperature Relationships Between Sixteen Zone Stations in Arizona and Respective Key Stations. Ira S. Brenner, June 1983. (PB83 249904)
180 Standard Hydrologic Exchange Format (SHEF) Version I. Fhillip A. Pasteris, Vemon C. Bissel, David G. Bennet, August 1983. (PB85 106052)

181 Quantitative and Spacial Distribution of Winter Precipitation along Utah's Wasatch Front. Lawrence B. Dunn, August 1983. (PB85 106912)

182500 Millibar Sign Frequency Teleconnection Charts * Winter, Lawrence B. Dunn, December 1983. (PB85 106276)
183500 Millibar Sign Frequency Teleconnection Charts - Spring. Lawrence B. Dunn, January 1984. (PB85 111367)
184 Collection and Use of Lightning Strike Data in the Westem U.S. During Summer 1983. Glenn Rasch and Mark Mathewson, February 1984. (PB85 110534)
185500 Millibar Sign Frequency Teleconnection Charts - Summer. Lawrence B. Dunn, March 1984. (PB85 111359)
186 Annual Data and Verification Tabulation eastern North Pacific Tropical Storms and Hurricanes 1983. E.B. Gunther, March 1984. (PB85 109635)

187500 Millibar Sign Frequency Teleconnection Charts - Fall. Lawrence B. Dunn, May 1984. (PB85-110930)
188 The Use and interpretation of Isentropic Analyses. Jeftrey L. Anderson, October 1984. (PB85-132694)
189 Annual Data \& Verification Tabulation Eastem North Pacific Tropical Storms and Hurricanes 1984. E.B. Gunther and R.L. Cross, April 1985. (PB85 1878887AS)

190 Great Salt Lake Effect Snowfali: Some Notes and An Example. David M. Carpenter, October 1985. (PB86 119153/AS)
191 Large Scale Patterns Associated with Major Freeze Episodes in the Agricultural Southwest. Ronald S. Hamilton and Glenn R. Lussky, December 1985. (PB86 144474AS)

192 NWR Voice Synthesis Project: Phase I. Glen W. Sampson, January 1986. (PB86 145604/AS)
193 The MCC - An Overview and Case Study on its Impact in the Westem United States. Glenn R. Lussky, March 1986. (PE86 170651/AS)
194 Annual Data and Verification Tabulation Eastern North Pacific Tropical Storms and Hurricanes 1985. E.B. Gunther and R.L. Cross, March 1986. (PB86 170941/AS)

195 Radid Interpretation Guidelines. Roger G. Pappas, March 1986. (PB86 177680/AS)
196 A Mesoscaie Convective Complex Type Storm over the Desert Southwest. Darryl Randerson, Aprit A Mesoscaie Convective C
1986. (PB86 190998/AS)
197 The Effects of Eastem North Pacific Tropical Cyclones on the Southwestem United States. Walter Smith, August 1986. (PB87 106258AS)
198 Preliminary Lightning Climatology Studies for Idaho. Christopher D. Hill, Carl J. Gorski, and Michael C. Conger, April 1987. (PB87 180196/AS)

199 Heavy Rains and Flooding in Montana: A Case for Slantwise Convection. Gienn R. Lussky, April 1987. (PB87 185229/AS)

200 Annual Data and Verification Tabulation Eastem North Pacific Tropical Storms and Hurricanes 1986. Roger L. Cross and Kenneth B. Mielke, September 1987. (FB88 110895/AS)
201 An Inexpensive Solution for the Mass Distribution of Satellite limages. Glen W. Sampson and George Clark, September 1987. (PB88 114038/AS)
202 Annual Data and Veritication Tabulation Eastem North Pacific Tropical Storms and Hurricanes 1987. Roger L. Cross and Kenneth B. Mieike, September 1988. (PBe8-101935/AS)
203 An Investigation of the 24 September $1988^{\text {"Cold Sector Tomado Outbreak in Northem Califomia. }}$ John F. Monteverdi and Scott A. Braun, October 1988. (PB89 121297/AS)
204 Preliminary Analysis of Cloud-To-Ground Lightning in the Vicinity of the Nevaca Test Site. Carven Scott, November 1988. (PE89 $128649 /$ AS)
205 Forecast Guidelines For Fire Weather and Forecasters - How Nightime Hurnidity Affects Wildiand Fuels. David W. Goens, February 1989. (PB89 162549/AS)
206 A Collection of Papers Related to Heavy Precipitation Forecasting. Westem Region Headquarters, Scientific Services Division. August 1989. (PE89 230833/AS)

Cimate of Billings, Montana. Jeffrey J. Zeltwanger and Mark H. Srobin. November 2000
265 Climate of Sheridan, Wyoming. Jeffrey J. Zeltwanger, Sally Springer, Mark H. Strobin. March 2001
266 Climate of Sacramento, Califomia. Laura Masters-Bevan. December 2000 (7th Revision)
267 Sulphur Mountain Doppler Radar. A Performance Study. Los Angeles/Oxnard WFO. August 2001

NOAA SCIENTIFIC AND TECHNICAL PUBLICATIONS

The National Oceanic and Atmospheric Administration was established as part of the Department of Commerce on October 3, 1970. The mission responsibilities of NOAA are to assess the socioeconomic impact of natural and technological changes in the environment and to monitor and predict the state of the solid Earth, the oceans and their living resources, the atmosphere, and the space environment of the Earth.

The major components of NOAA regularly produce various types of scientific and technical information in the following kinds of publications.

PROFESSIONAL PAPERS--Important definitive research results, major techniques, and special investigations.

CONTRACT AND GRANT REPORTS--Reports prepared by contractors or grantees under NOAA sponsorship.

ATLAS--Presentation of analyzed data generally in the form of maps showing distribution of rainfall, chemical and physical conditions of oceans and atmosphere, distribution of fishes and marine mammals, ionospheric conditions, etc.

TECHNICAL SERVICE PUBLICATIONS -Reports containing data, observations, instructions, etc. A partial listing includes data serials; prediction and outlook periodicals; technical manuals, training papers, planning reports, and information serials; and miscellaneous technical publications.

TECHNICAL REPORTS--Journal quality with extensive details, mathematical developments, or data listings.

TECHNICAL MEMORANDUMS--Reports of preliminary, partial, or negative research or technology results, interim instructions, and the like.

Information on availability of NOAA publications can be obtained from:
NATIONAL TECHNICAL INFORMATION SERVICE

U. S. DEPARTMENT OF COMMERCE

5285 PORT ROYAL ROAD

SPRINGFIELD, VA 22161

[^0]: \# Also occurred in other previous years

[^1]: *Monthly normals based on climatological normals 1971-2000.

[^2]: *Averages based on climatological normals 1971-2000

[^3]: * An excessive storm has been defined as a period of time where measurable precipitation falls on consecutive days, leading to 3.50 inches or greater accumulation by the time the precipitation ends.

[^4]: * Monthly normals calculated from period 1971-2000.

[^5]: * Snowfall is for the period of July through June ending in the year indicated.
 ! Estimated

[^6]: * An excessive snowstorm has been defined as a period of time where measurable snowfall occurs on consecutive days, leading to 25 inches or greater accumulation by the time the snowfall ends.

[^7]: * Less than 0.1 occurrences.

